CdI2 in water was extracted with 18-crown-6 ether (L) into 10 diluents at 298 K. The following equilibrium constants were determined or evaluated: some extraction constants (Kex/mol-3·dm9 & Kex,ip/mol-2·...CdI2 in water was extracted with 18-crown-6 ether (L) into 10 diluents at 298 K. The following equilibrium constants were determined or evaluated: some extraction constants (Kex/mol-3·dm9 & Kex,ip/mol-2·dm6 for CdLI2, Kex±/mol-2·dm6 for CdLI+ with I-, & Kex2±/mol-1·dm3 for CdL2+ with 2I-), conditional distribution constants (KD,I for I-, KD,CdLI for CdLI+, & KD,CdL for CdL2+) between the two phases, and an ion-pair formation constant (K1,org/mol-1·dm3) for CdLI+ and that (K2,org/mol-1·dm3) for CdLI2 in the organic (org) phases. Using the K1,org and K2,org values, acidities of the complex ions, CdL2+ and CdLA+ (A- = I-, Br-, & Cl-), in the 11 diluents were classified by applying the HSAB rule. Especially, the CdLA+ ions were classified as the soft acids in 9 diluents. Also, molar volumes (Vj/cm3·mol-1) of j = CdLI2 and CdL2+ were determined with the regular-solution-theory plot of logKex,ip vs. logKD,L and its pseudo-plot of logKD,CdL, respectively. Here, KD,L denotes the distribution constant of L between the two phases. So, sizes among CdLA2 and CdL2+ were compared by using the Vj values. Additionally, some distribution equilibrium potentials (dep/V) between the water and org bulk phases were topically calculated from an equation of KD,I with KSD,I, where the symbol KSD,I shows a standard distribution constant of I- at dep = 0 V for a given diluent.展开更多
文摘CdI2 in water was extracted with 18-crown-6 ether (L) into 10 diluents at 298 K. The following equilibrium constants were determined or evaluated: some extraction constants (Kex/mol-3·dm9 & Kex,ip/mol-2·dm6 for CdLI2, Kex±/mol-2·dm6 for CdLI+ with I-, & Kex2±/mol-1·dm3 for CdL2+ with 2I-), conditional distribution constants (KD,I for I-, KD,CdLI for CdLI+, & KD,CdL for CdL2+) between the two phases, and an ion-pair formation constant (K1,org/mol-1·dm3) for CdLI+ and that (K2,org/mol-1·dm3) for CdLI2 in the organic (org) phases. Using the K1,org and K2,org values, acidities of the complex ions, CdL2+ and CdLA+ (A- = I-, Br-, & Cl-), in the 11 diluents were classified by applying the HSAB rule. Especially, the CdLA+ ions were classified as the soft acids in 9 diluents. Also, molar volumes (Vj/cm3·mol-1) of j = CdLI2 and CdL2+ were determined with the regular-solution-theory plot of logKex,ip vs. logKD,L and its pseudo-plot of logKD,CdL, respectively. Here, KD,L denotes the distribution constant of L between the two phases. So, sizes among CdLA2 and CdL2+ were compared by using the Vj values. Additionally, some distribution equilibrium potentials (dep/V) between the water and org bulk phases were topically calculated from an equation of KD,I with KSD,I, where the symbol KSD,I shows a standard distribution constant of I- at dep = 0 V for a given diluent.