The supersaturated solution of MgO· 3B2O3 18% MgSO4 H2O was prepared and then reacted under hydrothermal condition at 120℃ . The solid phases of the different time were identified by means of chemical analysis, ...The supersaturated solution of MgO· 3B2O3 18% MgSO4 H2O was prepared and then reacted under hydrothermal condition at 120℃ . The solid phases of the different time were identified by means of chemical analysis, XRD, FT IR, SEM. The results show that the solid phases are spherical and sheet szaibelyite, which is different from those of non hydrothermal condition. On these grounds we suggested the crystallization mechanism of szaibelyite under the hydrothermal condition and then discussed the effects of hydrothermal properties on the crystallization mechanism.展开更多
The non-heat-treatable AA3003-H18 plates were joined by friction stir welding(FSW) to achieve a proper joint by optimizing the welding parameters.For this purpose,the effects of heat input on microstructure and mech...The non-heat-treatable AA3003-H18 plates were joined by friction stir welding(FSW) to achieve a proper joint by optimizing the welding parameters.For this purpose,the effects of heat input on microstructure and mechanical properties of the welded samples were investigated by changing the ratios of rotational speed(800-1200 r/min) to travel speed(40-100 mm/min)(w/v).It was revealed that the grain growth rate was strongly increased with the increase of the heat input by rotational speed at constant travel speed,while the grain growth rate was slightly increased with the increase of the heat input by travel speed at constant rotational speed.Subsequently,hardness reduction was observed in the stir zone at higher rotational speed compared with that at lower one.An interesting observation was that various welding parameters do not have noticeable effect on the tensile strength of the FSW joints.Also,it has been observed that the fracture location of tensile test specimens was placed in the heat-affected zone(HAZ)on the advancing side at lower travel speed,while at higher travel speed,it was placed at the HAZ/thermomechanical affected zone(TMAZ) interface on the retreating side.展开更多
Multiple new variants of severe acute respiratory syndrome coronavirus 2(SARS-Co V-2)have constantly emerged,as the delta and omicron variants,which have developed resistance to currently gained neutralizing antibodie...Multiple new variants of severe acute respiratory syndrome coronavirus 2(SARS-Co V-2)have constantly emerged,as the delta and omicron variants,which have developed resistance to currently gained neutralizing antibodies.This highlights a critical need to discover new therapeutic agents to overcome the variants mutations.Despite the availability of vaccines against coronavirus disease 2019(COVID-19),the use of broadly neutralizing antibodies has been considered as an alternative way for the prevention or treatment of SARS-Co V-2 variants infection.Here,we show that the nasal delivery of two previously characterized broadly neutralizing antibodies(F61 and H121)protected K18-h ACE2 mice against lethal challenge with SARS-Co V-2 variants.The broadly protective efficacy of the F61 or F61/F121 cocktail antibodies was evaluated by lethal challenge with the wild strain(WIV04)and multiple variants,including beta(B.1.351),delta(B.1.617.2),and omicron(B.1.1.529)at 200or 1000 TCID_(50),and the minimum antibody administration doses(5-1.25 mg/kg body weight)were also evaluated with delta and omicron challenge.Fully prophylactic protections were found in all challenged groups with both F61 and F61/H121 combination at the administration dose of 20 mg/kg body weight,and corresponding mice lung viral RNA showed negative,with almost all alveolar septa and cavities remaining normal.Furthermore,low-dose antibody treatment induced significant prophylactic protection against lethal challenge with delta and omicron variants,whereas the F61/H121 combination showed excellent results against omicron infection.Our findings indicated the potential use of broadly neutralizing monoclonal antibodies as prophylactic and therapeutic agent for protection of current emerged SARS-Co V-2 variants infection.展开更多
文摘The supersaturated solution of MgO· 3B2O3 18% MgSO4 H2O was prepared and then reacted under hydrothermal condition at 120℃ . The solid phases of the different time were identified by means of chemical analysis, XRD, FT IR, SEM. The results show that the solid phases are spherical and sheet szaibelyite, which is different from those of non hydrothermal condition. On these grounds we suggested the crystallization mechanism of szaibelyite under the hydrothermal condition and then discussed the effects of hydrothermal properties on the crystallization mechanism.
基金the research board of Sharif University of Technology for the financial supportthe provision of the research facilities used in this work
文摘The non-heat-treatable AA3003-H18 plates were joined by friction stir welding(FSW) to achieve a proper joint by optimizing the welding parameters.For this purpose,the effects of heat input on microstructure and mechanical properties of the welded samples were investigated by changing the ratios of rotational speed(800-1200 r/min) to travel speed(40-100 mm/min)(w/v).It was revealed that the grain growth rate was strongly increased with the increase of the heat input by rotational speed at constant travel speed,while the grain growth rate was slightly increased with the increase of the heat input by travel speed at constant rotational speed.Subsequently,hardness reduction was observed in the stir zone at higher rotational speed compared with that at lower one.An interesting observation was that various welding parameters do not have noticeable effect on the tensile strength of the FSW joints.Also,it has been observed that the fracture location of tensile test specimens was placed in the heat-affected zone(HAZ)on the advancing side at lower travel speed,while at higher travel speed,it was placed at the HAZ/thermomechanical affected zone(TMAZ) interface on the retreating side.
基金supported by National Key Research and Development Program of China(2021YFC2600200,2017YFA0205100)。
文摘Multiple new variants of severe acute respiratory syndrome coronavirus 2(SARS-Co V-2)have constantly emerged,as the delta and omicron variants,which have developed resistance to currently gained neutralizing antibodies.This highlights a critical need to discover new therapeutic agents to overcome the variants mutations.Despite the availability of vaccines against coronavirus disease 2019(COVID-19),the use of broadly neutralizing antibodies has been considered as an alternative way for the prevention or treatment of SARS-Co V-2 variants infection.Here,we show that the nasal delivery of two previously characterized broadly neutralizing antibodies(F61 and H121)protected K18-h ACE2 mice against lethal challenge with SARS-Co V-2 variants.The broadly protective efficacy of the F61 or F61/F121 cocktail antibodies was evaluated by lethal challenge with the wild strain(WIV04)and multiple variants,including beta(B.1.351),delta(B.1.617.2),and omicron(B.1.1.529)at 200or 1000 TCID_(50),and the minimum antibody administration doses(5-1.25 mg/kg body weight)were also evaluated with delta and omicron challenge.Fully prophylactic protections were found in all challenged groups with both F61 and F61/H121 combination at the administration dose of 20 mg/kg body weight,and corresponding mice lung viral RNA showed negative,with almost all alveolar septa and cavities remaining normal.Furthermore,low-dose antibody treatment induced significant prophylactic protection against lethal challenge with delta and omicron variants,whereas the F61/H121 combination showed excellent results against omicron infection.Our findings indicated the potential use of broadly neutralizing monoclonal antibodies as prophylactic and therapeutic agent for protection of current emerged SARS-Co V-2 variants infection.