A 2D model is built on the package of FLUENT to study the effects of radial aspect ratio (R/W), length-to-width ratio (L/W), strain rate (SR), and buoyancy (Ri=Gr/Re^2) on the validation of the simplified 1D m...A 2D model is built on the package of FLUENT to study the effects of radial aspect ratio (R/W), length-to-width ratio (L/W), strain rate (SR), and buoyancy (Ri=Gr/Re^2) on the validation of the simplified 1D model. In the present 2D model, the methane/air homogeneous reaction mechanism of Peters and the methane/air/platinum heterogeneous reaction mechanism of Deutschmann are applied. By comparison between the 1D and 2D numerical results, it is found that the validation of 1D model is highly related with the catalytic stagnation reactor configuration. For length-to-width ratio L/W = 1 configuration, 1D laminar model is applicable when the radial aspect ratio R/W 〉 0.4. For R/W = 0.6, the reactor exhibited 1D characteristics when L/W 〈 1. Compared with the temperature and species profiles, the velocity distribution along the axis is more sensitive to the change of radial aspect ratio and length-to-width ratio. With increasing of the strain rate, the flame front goes closer to the catalytic wall surface and the difference between the 1D and 2D results decreases. For a valid 1D simulation, it is recommended that the strain rate should be convection can be neglected when Ri〈 5. greater than 20 s^-1. The effects of natural展开更多
Evapotranspiration is the most important expenditure item in the water balance of terrestrial ecosystems,and accurate evapotranspiration modeling is of great significance for hydrological,ecological,agricultural,and w...Evapotranspiration is the most important expenditure item in the water balance of terrestrial ecosystems,and accurate evapotranspiration modeling is of great significance for hydrological,ecological,agricultural,and water resource management.Artificial forests are an important means of vegetation restoration in the western Loess Plateau,and accurate estimates of their evapotranspiration are essential to the management and development of water use strategies for artificial forests.This study estimated the soil moisture and evapotranspiration based on the HYDRUS-1D model for the artificial Platycladus orientalis(L.)Franco forest in western mountains of Loess Plateau,China from 20 April to 31 October,2023.Moreover,the influence factors were identified by combining the correlation coefficient method and the principal component analysis(PCA)method.The results showed that HYDRUS-1D model had strong applicability in portraying hydrological processes in this area and revealed soil water surplus from 20 April to 31 October,2023.The soil water accumulation was 49.64 mm;the potential evapotranspiration(ETp)was 809.67 mm,which was divided into potential evaporation(Ep;95.07 mm)and potential transpiration(Tp;714.60 mm);and the actual evapotranspiration(ETa)was 580.27 mm,which was divided into actual evaporation(Ea;68.27 mm)and actual transpiration(Ta;512.00 mm).From April to October 2023,the ETp,Ep,Tp,ETa,Ea,and Ta first increased and then decreased on both monthly and daily scales,exhibiting a single-peak type trend.The average ratio of Ta/ETa was 0.88,signifying that evapotranspiration mainly stemmed from transpiration in this area.The ratio of ETa/ETp was 0.72,indicating that this artificial forest suffered from obvious drought stress.The ETp was significantly positively correlated with ETa,and the R2 values on the monthly and daily scales were 0.9696 and 0.9635(P<0.05),respectively.Furthermore,ETa was significantly positively correlated with temperature,solar radiation,and wind speed,and negatively correlated with relative humidity and precipitation(P<0.05);and temperature exhibited the highest correlation with ETa.Thus,ETp and temperature were the decisive contributors to ETa in this area.The findings provide an effective method for simulating regional evapotranspiration and theoretical reference for water management of artificial forests,and deepen understanding of effects of each influence factors on ETa in arid areas.展开更多
The similarities and differences in inherent mechanism and characteristic frequency between the onedimensional(1D)poroelastic model and the layered White model were investigated.This investigation was conducted under ...The similarities and differences in inherent mechanism and characteristic frequency between the onedimensional(1D)poroelastic model and the layered White model were investigated.This investigation was conducted under the assumption that the rock was homogenous and isotropic at the mesoscopic scale.For the inherent mechanism,both models resulted from quasi-static flow in a slow P-wave diffusion mode,and the differences between them originated from saturated fluids and boundary conditions.On the other hand,for the characteristic frequencies of the models,the characteristic frequency of the 1D poroelastic model was first modified because the elastic constant and formula for calculating it were misused and then compared to that of the layered White model.Both of them moved towards higher frequencies with increasing permeability and decreasing viscosity and diffusion length.The differences between them were due to the diffusion length.The diffusion length for the 1D poroelastic model was determined by the sample length,whereas that for the layered White model was determined by the length of the representative elementary volume(REV).Subsequently,a numerical example was presented to demonstrate the similarities and differences between the models.Finally,published experimental data were interpreted using the 1D poroelastic model combined with the Cole-Cole model.The prediction of the combined model was in good agreement with the experimental data,thereby validating the effectiveness of the 1D poroelastic model.Furthermore,the modified characteristic frequency in our study was much closer to the experimental data than the previous prediction,validating the effectiveness of our modification of the characteristic frequency of the 1D poroelastic model.The investigation provided insight into the internal relationship between wave-induced fluid flow(WIFF)models at macroscopic and mesoscopic scales and can aid in a better understanding of the elastic modulus dispersion and attenuation caused by the WIFF at different scales.展开更多
A methodology for performance optimization of torque converters is put forward based on the one-dimensional (1D) flow model. It is found that the inaccuracy of 1D flow model for predicting hydraulic performance at the...A methodology for performance optimization of torque converters is put forward based on the one-dimensional (1D) flow model. It is found that the inaccuracy of 1D flow model for predicting hydraulic performance at the low speed ratio is mainly caused by the separation phenomenon at the stator cascade which is induced by large flow impinging at the pressure side of the stator blades. A semi-empirical separation model is presented and incorporated to the original 1D flow model. It is illustrated that the improved model is able to predict the circumferential velocity components accurately, which can be applied to performance optimization. Then, the Pareto front is obtained by using the genetic algorithm (GA) in order to inspect the coupled relationship among stalling impeller torque capacity, stalling torque ratio and efficiency. The efficiency is maximized on the premise that a target stalling impeller torque capacity and torque ratio are achieved. Finally, the optimized result is verified by the computational fluid dynamics(CFD) simulation, which indicates that the maximal efficiency is increased by 0.96%.展开更多
In this study, 1D and 2D shallow-water models were coupled to simulate unsteady flow in channel networks and embayment. The 1D model solved the 1D shallow-water equations (St. Venant) using the Preissmann box method a...In this study, 1D and 2D shallow-water models were coupled to simulate unsteady flow in channel networks and embayment. The 1D model solved the 1D shallow-water equations (St. Venant) using the Preissmann box method and targeted long narrow reaches of the river networks, while the 2D model targeted broad channels and embayment and solved the 2D shallow-water equations using a semi-implicit scheme applied to an unstructured grid of triangular cells. The 1D and 2D models were solved simultaneously by building a matrix for the free surface elevation at every 1D junction and 2D cell center. Velocities were then computed explicitly based on the results at the previous time step and the updated water level. The originality of the scheme arose from a novel coupling method. The results showed that the coupled 1D/2D model produced identical results as the full 2D model in classical to benchmark problems with considerable savings in computational effort. Application of the model to the Pearl River Estuary in southern China showed that complex patterns of tidal wave propagation could be efficiently modeled.展开更多
In recent years, the Cavally River has been subject to multiple activities, <span style="font-family:;" "="">including the construction of diversion channels and a bridge that makes it v...In recent years, the Cavally River has been subject to multiple activities, <span style="font-family:;" "="">including the construction of diversion channels and a bridge that makes it vulnerable to flooding. In order to assess the impact of these hydraulic structures on the <span>river hydrodynamic functioning, a 1D-2D model was realized. The</span> implementation of the 1D-2D model consisted </span><span style="font-family:;" "="">of </span><span style="font-family:;" "="">first </span><span style="font-family:;" "="">running</span><span style="font-family:;" "=""> </span><span style="font-family:;" "="">the 1D model, then the 2D model, and finally in coupling them. The 1D-2D model was designed with <span>the 1988 flood hydrograph, a Manning’s coefficient of 0.052 m<sup>1/3</sup>/s for the </span>minor bed and 0.06 m<sup>1/3</sup>/s for the major bed. The results of the hydraulic model show that the velocities are almost identical to those of the Cavally in natural operation. The values of the velocities are included between 0.4 m/s and 1.3 m/s at the level of the minor bed of the river and between 0.06 m/s and 0.71 m/s at the level of the floodplains. The average water level for flood propagation is 262.37 ± 0.44 m before construction of the structures and 262.23 ± <span>0.85 m after construction of the structures. The 0.41 m reduction in water</span> level due to the diversion canal and bridge is negligible compared to the total fluctuations of the Cavally River, which vary from 6 to 7 m over the year.</span>展开更多
The purpose of this study is to verify an 1D multi-plate heat-transfer model estimating the temperature distribution on the interface between polymer electrolyte membrane and catalyst layer at cathode in single cell o...The purpose of this study is to verify an 1D multi-plate heat-transfer model estimating the temperature distribution on the interface between polymer electrolyte membrane and catalyst layer at cathode in single cell of polymer electrolyte fuel cell, which is named as reaction surface in this study, with a 3D numerical simulation model solving many governing equations on the coupling phenomena in the cell. The results from both models/simulations agreed well. The effects of initial operation temperature, flow rate, and relative humidity of supply gas on temperature distribution on the reaction surface were also investigated. It was found in both 1D and 3D simulations that, the temperature rise (i.e., Treact-Tini) of the reaction surface from initial operation temperature at 70℃ was higher than that at 80℃ irrespective of flow rate of supply gas. The effect of relative humidity of supply gas on Treact- Tini near the inlet of the cell was small. Compared to the previous studies conducted under the similar operation conditions, the Treact - Tini calculated by 1D multi-plate heat-transfer model in this study as well as numerical simulation using 3D model was reasonable.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11172296 and 50936005)
文摘A 2D model is built on the package of FLUENT to study the effects of radial aspect ratio (R/W), length-to-width ratio (L/W), strain rate (SR), and buoyancy (Ri=Gr/Re^2) on the validation of the simplified 1D model. In the present 2D model, the methane/air homogeneous reaction mechanism of Peters and the methane/air/platinum heterogeneous reaction mechanism of Deutschmann are applied. By comparison between the 1D and 2D numerical results, it is found that the validation of 1D model is highly related with the catalytic stagnation reactor configuration. For length-to-width ratio L/W = 1 configuration, 1D laminar model is applicable when the radial aspect ratio R/W 〉 0.4. For R/W = 0.6, the reactor exhibited 1D characteristics when L/W 〈 1. Compared with the temperature and species profiles, the velocity distribution along the axis is more sensitive to the change of radial aspect ratio and length-to-width ratio. With increasing of the strain rate, the flame front goes closer to the catalytic wall surface and the difference between the 1D and 2D results decreases. For a valid 1D simulation, it is recommended that the strain rate should be convection can be neglected when Ri〈 5. greater than 20 s^-1. The effects of natural
基金financially supported by the National Natural Science Foundation of China(42071047,41771035)the Basic Research Innovation Group Project of Gansu Province(22JR5RA129)the Excellent Doctoral Program in Gansu Province(24JRRA152).
文摘Evapotranspiration is the most important expenditure item in the water balance of terrestrial ecosystems,and accurate evapotranspiration modeling is of great significance for hydrological,ecological,agricultural,and water resource management.Artificial forests are an important means of vegetation restoration in the western Loess Plateau,and accurate estimates of their evapotranspiration are essential to the management and development of water use strategies for artificial forests.This study estimated the soil moisture and evapotranspiration based on the HYDRUS-1D model for the artificial Platycladus orientalis(L.)Franco forest in western mountains of Loess Plateau,China from 20 April to 31 October,2023.Moreover,the influence factors were identified by combining the correlation coefficient method and the principal component analysis(PCA)method.The results showed that HYDRUS-1D model had strong applicability in portraying hydrological processes in this area and revealed soil water surplus from 20 April to 31 October,2023.The soil water accumulation was 49.64 mm;the potential evapotranspiration(ETp)was 809.67 mm,which was divided into potential evaporation(Ep;95.07 mm)and potential transpiration(Tp;714.60 mm);and the actual evapotranspiration(ETa)was 580.27 mm,which was divided into actual evaporation(Ea;68.27 mm)and actual transpiration(Ta;512.00 mm).From April to October 2023,the ETp,Ep,Tp,ETa,Ea,and Ta first increased and then decreased on both monthly and daily scales,exhibiting a single-peak type trend.The average ratio of Ta/ETa was 0.88,signifying that evapotranspiration mainly stemmed from transpiration in this area.The ratio of ETa/ETp was 0.72,indicating that this artificial forest suffered from obvious drought stress.The ETp was significantly positively correlated with ETa,and the R2 values on the monthly and daily scales were 0.9696 and 0.9635(P<0.05),respectively.Furthermore,ETa was significantly positively correlated with temperature,solar radiation,and wind speed,and negatively correlated with relative humidity and precipitation(P<0.05);and temperature exhibited the highest correlation with ETa.Thus,ETp and temperature were the decisive contributors to ETa in this area.The findings provide an effective method for simulating regional evapotranspiration and theoretical reference for water management of artificial forests,and deepen understanding of effects of each influence factors on ETa in arid areas.
基金supported by the National Natural Science Foundation of China (42030810,42104115)。
文摘The similarities and differences in inherent mechanism and characteristic frequency between the onedimensional(1D)poroelastic model and the layered White model were investigated.This investigation was conducted under the assumption that the rock was homogenous and isotropic at the mesoscopic scale.For the inherent mechanism,both models resulted from quasi-static flow in a slow P-wave diffusion mode,and the differences between them originated from saturated fluids and boundary conditions.On the other hand,for the characteristic frequencies of the models,the characteristic frequency of the 1D poroelastic model was first modified because the elastic constant and formula for calculating it were misused and then compared to that of the layered White model.Both of them moved towards higher frequencies with increasing permeability and decreasing viscosity and diffusion length.The differences between them were due to the diffusion length.The diffusion length for the 1D poroelastic model was determined by the sample length,whereas that for the layered White model was determined by the length of the representative elementary volume(REV).Subsequently,a numerical example was presented to demonstrate the similarities and differences between the models.Finally,published experimental data were interpreted using the 1D poroelastic model combined with the Cole-Cole model.The prediction of the combined model was in good agreement with the experimental data,thereby validating the effectiveness of the 1D poroelastic model.Furthermore,the modified characteristic frequency in our study was much closer to the experimental data than the previous prediction,validating the effectiveness of our modification of the characteristic frequency of the 1D poroelastic model.The investigation provided insight into the internal relationship between wave-induced fluid flow(WIFF)models at macroscopic and mesoscopic scales and can aid in a better understanding of the elastic modulus dispersion and attenuation caused by the WIFF at different scales.
基金National Natural Science Foundation of China(No. 51175379)
文摘A methodology for performance optimization of torque converters is put forward based on the one-dimensional (1D) flow model. It is found that the inaccuracy of 1D flow model for predicting hydraulic performance at the low speed ratio is mainly caused by the separation phenomenon at the stator cascade which is induced by large flow impinging at the pressure side of the stator blades. A semi-empirical separation model is presented and incorporated to the original 1D flow model. It is illustrated that the improved model is able to predict the circumferential velocity components accurately, which can be applied to performance optimization. Then, the Pareto front is obtained by using the genetic algorithm (GA) in order to inspect the coupled relationship among stalling impeller torque capacity, stalling torque ratio and efficiency. The efficiency is maximized on the premise that a target stalling impeller torque capacity and torque ratio are achieved. Finally, the optimized result is verified by the computational fluid dynamics(CFD) simulation, which indicates that the maximal efficiency is increased by 0.96%.
基金financially supporrted by the National Key Research and Development Program of China(Grant No.2017YFC1404200)the National Natural Science Foundation of China(Grant Nos.51779150 and 51979040)
文摘In this study, 1D and 2D shallow-water models were coupled to simulate unsteady flow in channel networks and embayment. The 1D model solved the 1D shallow-water equations (St. Venant) using the Preissmann box method and targeted long narrow reaches of the river networks, while the 2D model targeted broad channels and embayment and solved the 2D shallow-water equations using a semi-implicit scheme applied to an unstructured grid of triangular cells. The 1D and 2D models were solved simultaneously by building a matrix for the free surface elevation at every 1D junction and 2D cell center. Velocities were then computed explicitly based on the results at the previous time step and the updated water level. The originality of the scheme arose from a novel coupling method. The results showed that the coupled 1D/2D model produced identical results as the full 2D model in classical to benchmark problems with considerable savings in computational effort. Application of the model to the Pearl River Estuary in southern China showed that complex patterns of tidal wave propagation could be efficiently modeled.
文摘In recent years, the Cavally River has been subject to multiple activities, <span style="font-family:;" "="">including the construction of diversion channels and a bridge that makes it vulnerable to flooding. In order to assess the impact of these hydraulic structures on the <span>river hydrodynamic functioning, a 1D-2D model was realized. The</span> implementation of the 1D-2D model consisted </span><span style="font-family:;" "="">of </span><span style="font-family:;" "="">first </span><span style="font-family:;" "="">running</span><span style="font-family:;" "=""> </span><span style="font-family:;" "="">the 1D model, then the 2D model, and finally in coupling them. The 1D-2D model was designed with <span>the 1988 flood hydrograph, a Manning’s coefficient of 0.052 m<sup>1/3</sup>/s for the </span>minor bed and 0.06 m<sup>1/3</sup>/s for the major bed. The results of the hydraulic model show that the velocities are almost identical to those of the Cavally in natural operation. The values of the velocities are included between 0.4 m/s and 1.3 m/s at the level of the minor bed of the river and between 0.06 m/s and 0.71 m/s at the level of the floodplains. The average water level for flood propagation is 262.37 ± 0.44 m before construction of the structures and 262.23 ± <span>0.85 m after construction of the structures. The 0.41 m reduction in water</span> level due to the diversion canal and bridge is negligible compared to the total fluctuations of the Cavally River, which vary from 6 to 7 m over the year.</span>
文摘The purpose of this study is to verify an 1D multi-plate heat-transfer model estimating the temperature distribution on the interface between polymer electrolyte membrane and catalyst layer at cathode in single cell of polymer electrolyte fuel cell, which is named as reaction surface in this study, with a 3D numerical simulation model solving many governing equations on the coupling phenomena in the cell. The results from both models/simulations agreed well. The effects of initial operation temperature, flow rate, and relative humidity of supply gas on temperature distribution on the reaction surface were also investigated. It was found in both 1D and 3D simulations that, the temperature rise (i.e., Treact-Tini) of the reaction surface from initial operation temperature at 70℃ was higher than that at 80℃ irrespective of flow rate of supply gas. The effect of relative humidity of supply gas on Treact- Tini near the inlet of the cell was small. Compared to the previous studies conducted under the similar operation conditions, the Treact - Tini calculated by 1D multi-plate heat-transfer model in this study as well as numerical simulation using 3D model was reasonable.