Understanding the structure of tropical cyclone(TC)hydrometeors is crucial for detecting the changes in the distribution and intensity of precipitation.In this study,the GMI brightness temperature and cloud-dependent ...Understanding the structure of tropical cyclone(TC)hydrometeors is crucial for detecting the changes in the distribution and intensity of precipitation.In this study,the GMI brightness temperature and cloud-dependent 1DVAR algorithm were used to retrieve the hydrometeor profiles and surface rain rate of TC Nanmadol(2022).The Advanced Radiative Transfer Modeling System(ARMS)was used to calculate the Jacobian and degrees of freedom(△DOF)of cloud water,rainwater,and graupel for different channels of GMI in convective conditions.The retrieval results were compared with the Dual-frequency Precipitation Radar(DPR),GMI 2A,and IMERG products.It is shown that from all channels of GMI,rain water has the highest△DOF,at 1.72.According to the radiance Jacobian to atmospheric state variables,cloud water emission dominates its scattering.For rain water,the emission of channels 1–4 dominates scattering.Compared with the GMI 2A precipitation product,the 1DVAR precipitation rate has a higher correlation coefficient(0.713)with the IMERG product and can better reflect the location of TC precipitation.Near the TC eyewall,the highest radar echo top indicates strong convection.Near the melting layer where Ka-band attenuation is strong,the double frequency difference of DPR data reflects the location of the melting.The DPR drop size distribution(DSD)product shows that there is a significant increase in particle size below the melting layer in the spiral rain band.Thus,the particle size may be one of the main reasons for the smaller rain water below the melting layer retrieved from 1DVAR.展开更多
Rainfall prediction remains one of the most challenging problems in weather forecasting. In order to improve high-resolution quantitative precipitation forecasts (QPF), a new procedure for assimilating rainfall rate...Rainfall prediction remains one of the most challenging problems in weather forecasting. In order to improve high-resolution quantitative precipitation forecasts (QPF), a new procedure for assimilating rainfall rate derived from radar composite reflectivity has been proposed and tested in a numerical simulation of the Chicago floods of 17–18 July 1996. The methodology is based on the one-dimensional variation scheme (1DVAR) assimilation approach introduced by Fillion and Errico but applied here using the Kain-Fritsch convective parameterization scheme (KF CPS). The novel feature of this work is the continuous assimilation of radar estimated rain rate over a three hour period, rather than a single assimilation at the initial (analysis) time. Most of the characteristics of this precipitation event, including the propagation, regeneration of mesoscale convective systems, the frontal boundary across the Midwest and the evolution of the low-level jet are better captured in the simulation as the radar-estimated precipitation rate is assimilated. The results indicate that precipitation assimilation during the early stage can improve the simulated mesoscale feature of the convection system and shorten the spin-up time significantly. Comparison of precipitation forecasts between the experiments with and without the 1DVAR indicates that the 1DVAR scheme has a positive impact on the QPF up to 36 hours in terms of the bias and bias equalized threat scores.展开更多
基金funded by the National Key Research and Development Program of China(Grant No.2022YFC3004202)the National Natural Science Foundation of China(Grant Nos.U2142212 and 42105136)。
文摘Understanding the structure of tropical cyclone(TC)hydrometeors is crucial for detecting the changes in the distribution and intensity of precipitation.In this study,the GMI brightness temperature and cloud-dependent 1DVAR algorithm were used to retrieve the hydrometeor profiles and surface rain rate of TC Nanmadol(2022).The Advanced Radiative Transfer Modeling System(ARMS)was used to calculate the Jacobian and degrees of freedom(△DOF)of cloud water,rainwater,and graupel for different channels of GMI in convective conditions.The retrieval results were compared with the Dual-frequency Precipitation Radar(DPR),GMI 2A,and IMERG products.It is shown that from all channels of GMI,rain water has the highest△DOF,at 1.72.According to the radiance Jacobian to atmospheric state variables,cloud water emission dominates its scattering.For rain water,the emission of channels 1–4 dominates scattering.Compared with the GMI 2A precipitation product,the 1DVAR precipitation rate has a higher correlation coefficient(0.713)with the IMERG product and can better reflect the location of TC precipitation.Near the TC eyewall,the highest radar echo top indicates strong convection.Near the melting layer where Ka-band attenuation is strong,the double frequency difference of DPR data reflects the location of the melting.The DPR drop size distribution(DSD)product shows that there is a significant increase in particle size below the melting layer in the spiral rain band.Thus,the particle size may be one of the main reasons for the smaller rain water below the melting layer retrieved from 1DVAR.
基金supported by the Canadian Foundation for Climate and Atmospheric Sciences (CFCAS), and CLUMEQ, which is funded in part by NSERC (MRS), FQRNT, and Mc Gill University
文摘Rainfall prediction remains one of the most challenging problems in weather forecasting. In order to improve high-resolution quantitative precipitation forecasts (QPF), a new procedure for assimilating rainfall rate derived from radar composite reflectivity has been proposed and tested in a numerical simulation of the Chicago floods of 17–18 July 1996. The methodology is based on the one-dimensional variation scheme (1DVAR) assimilation approach introduced by Fillion and Errico but applied here using the Kain-Fritsch convective parameterization scheme (KF CPS). The novel feature of this work is the continuous assimilation of radar estimated rain rate over a three hour period, rather than a single assimilation at the initial (analysis) time. Most of the characteristics of this precipitation event, including the propagation, regeneration of mesoscale convective systems, the frontal boundary across the Midwest and the evolution of the low-level jet are better captured in the simulation as the radar-estimated precipitation rate is assimilated. The results indicate that precipitation assimilation during the early stage can improve the simulated mesoscale feature of the convection system and shorten the spin-up time significantly. Comparison of precipitation forecasts between the experiments with and without the 1DVAR indicates that the 1DVAR scheme has a positive impact on the QPF up to 36 hours in terms of the bias and bias equalized threat scores.