The dynamic dipole polarizabilities for 1S, 2S and 3S states of the hydrogen atom are calculated using the finite B-spline basis set method, and the magic wavelengths for 1S-2S and 1S-3S transitions are identified. In...The dynamic dipole polarizabilities for 1S, 2S and 3S states of the hydrogen atom are calculated using the finite B-spline basis set method, and the magic wavelengths for 1S-2S and 1S-3S transitions are identified. In comparison of the solutions from the Schr6dinger and Dirac equations, the relativistic corrections on the magic wavelengths are of the order of 10-2 nm. The laser intensities for a 300-Er-deep optical trap and the heating rates at 514 and 1371 nm are estimated. The reliable prediction of the magic wavelengths would be helpful for the experimental design on the optical trapping of the hydrogen atoms, and in turn, it would be helpful to improve the accuracy of the measurements of the hydrogen 1S-2S and 1S-3S transitions.展开更多
Transition metal ditellurides(TMTDs)have versatile physical properties,including non-trivial topology,Weyl semimetal states and unique spin texture.Controlled growth of high-quality and large-scale monolayer TMTDs wit...Transition metal ditellurides(TMTDs)have versatile physical properties,including non-trivial topology,Weyl semimetal states and unique spin texture.Controlled growth of high-quality and large-scale monolayer TMTDs with preferred crystal phases is crucial for their applications.Here,we demonstrate the epitaxial growth of 1T'-MoTe_(2) on Au(111)and graphitized silicon carbide(Gr/SiC)by molecular beam epitaxy(MBE).We investigate the morphology of the grown1T'-MoTe_(2) at the atomic level by scanning tunnelling microscopy(STM)and reveal the corresponding microscopic growth mechanism.It is found that the unique ordered Te structures preferentially deposited on Au(111)regulate the growth of monolayer single crystal 1T'-MoTe_(2),while the Mo clusters were preferentially deposited on the Gr/SiC substrate,which impedes the ordered growth of monolayer MoTe_(2).We confirm that the size of single crystal 1T'-MoTe_(2) grown on Au(111)is nearly two orders of magnitude larger than that on Gr/SiC.By scanning tunnelling spectroscopy(STS),we observe that the STS spectrum of the monolayer 1T'-MoTe_(2) nano-island at the edge is different from that at the interior,which exhibits enhanced conductivity.展开更多
基金Supported by the National Basic Research Program of China under Grant No 2012CB821305the National Natural Science Foundation of China under Grant No 91536102
文摘The dynamic dipole polarizabilities for 1S, 2S and 3S states of the hydrogen atom are calculated using the finite B-spline basis set method, and the magic wavelengths for 1S-2S and 1S-3S transitions are identified. In comparison of the solutions from the Schr6dinger and Dirac equations, the relativistic corrections on the magic wavelengths are of the order of 10-2 nm. The laser intensities for a 300-Er-deep optical trap and the heating rates at 514 and 1371 nm are estimated. The reliable prediction of the magic wavelengths would be helpful for the experimental design on the optical trapping of the hydrogen atoms, and in turn, it would be helpful to improve the accuracy of the measurements of the hydrogen 1S-2S and 1S-3S transitions.
基金Project supported by the National Key R&D Program of China (Grant No.2022YFA1204302)the National Natural Science Foundation of China (Grant Nos.52022029,52221001,92263107,U23A20570,62090035,U19A2090,and 12174098)+1 种基金the Hunan Provincial Natural Science Foundation of China (Grant Nos.2022JJ30142 and 2019XK2001)in part supported by the State Key Laboratory of Powder Metallurgy,Central South University。
文摘Transition metal ditellurides(TMTDs)have versatile physical properties,including non-trivial topology,Weyl semimetal states and unique spin texture.Controlled growth of high-quality and large-scale monolayer TMTDs with preferred crystal phases is crucial for their applications.Here,we demonstrate the epitaxial growth of 1T'-MoTe_(2) on Au(111)and graphitized silicon carbide(Gr/SiC)by molecular beam epitaxy(MBE).We investigate the morphology of the grown1T'-MoTe_(2) at the atomic level by scanning tunnelling microscopy(STM)and reveal the corresponding microscopic growth mechanism.It is found that the unique ordered Te structures preferentially deposited on Au(111)regulate the growth of monolayer single crystal 1T'-MoTe_(2),while the Mo clusters were preferentially deposited on the Gr/SiC substrate,which impedes the ordered growth of monolayer MoTe_(2).We confirm that the size of single crystal 1T'-MoTe_(2) grown on Au(111)is nearly two orders of magnitude larger than that on Gr/SiC.By scanning tunnelling spectroscopy(STS),we observe that the STS spectrum of the monolayer 1T'-MoTe_(2) nano-island at the edge is different from that at the interior,which exhibits enhanced conductivity.