Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric const...Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric constant of Ti_(3)C_(2)T_(x)MXene,we have successfully synthesized core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres.This architecture,comprising SiO_(2) as the core,MXene as the intermediate layer,and MoS_(2) as the outer shell,is achieved through an electrostatic self‐assembly method combined with a hydrothermal process.This complex core‐shell structure not only provides a variety of loss mechanisms that effectively dissipate electromagnetic energy but also prevents self‐aggregation of MXene and MoS_(2) nanosheets.Notably,the synergistic combination of SiO_(2) and MoS_(2) with highly conductive MXene enables the suitable dielectric constant of the composites,ensuring optimal impedance matching.Therefore,the core‐shell structured SiO_(2)@MXene@MoS_(2) nanospheres exhibit excellent EMW absorption performance,featuring a remarkable minimum reflection loss(RL_(min))of−52.11 dB(2.4 mm).It is noteworthy that these nanospheres achieve an ultra‐wide effective absorption bandwidth(EAB)of 6.72 GHz.This work provides a novel approach for designing and synthesizing high‐performance EMW absorbers characterized by“wide bandwidth and strong reflection loss.”展开更多
As a promising anode material for magnesium ion rechargeable batteries,magnesium metavanadate(MgV_(2)O_(6))has attracted considerable research interest in recent years.A MgV_(2)O_(6)sample was synthesized via a facile...As a promising anode material for magnesium ion rechargeable batteries,magnesium metavanadate(MgV_(2)O_(6))has attracted considerable research interest in recent years.A MgV_(2)O_(6)sample was synthesized via a facile solid-state reaction by multistep-firing stoichiometric mixtures of MgO and V2O5 powder under an air atmosphere.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)occurred at 841 K and the enthalpy change was 4.37±0.04 kJ/mol.The endothermic effect at 1014 K and the enthalpy change was 26.54±0.26 kJ/mol,which is related to the incongruent melting ofβ-MgV_(2)O_(6).In situ XRD was performed to investigate phase transition of the as-prepared MgV_(2)O_(6)at high temperatures.The cell parameters obtained by Rietveld refinement indicated that it crystallizes in a monoclinic system with the C2/m space group,and the lattice parameters of a=9.280 A°,b=3.501 A°,c=6.731 A°,β=111.76°.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)was further studied by thermal kinetics,indicating that this process is controlled first by a fibril-like mechanism and then by a spherulitic-type mechanism with an increasing heating rate.Additionally,the enthalpy change of MgV_(2)O_(6)at high temperatures was measured utilizing the drop calorimetry,heat capacity was calculated and given as:Cp=208.3+0.03583T-4809000T^(−2)(298-923 K)(J mol^(−1)K^(−1)),the high-temperature heat capacity can be used to calculate Gibbs free energy of MgV_(2)O_(6)at high temperatures.展开更多
We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation O...We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation Observing System for Meteorology,Ionosphere,and Climate-2(COSMIC-2)satellite.Owing to the dense sampling of COSMIC-2,in addition to the strong peaks of gravity wave potential energy(GWPE)above the Andes and Tibetan Plateau,we found weak peaks above the Rocky,Atlas,Caucasus,and Tianshan Mountains.The land-sea contrast is responsible for the longitudinal variations of the GWPE in the lower and upper stratosphere.At 40°N/S,the peaks were mainly above the topographic regions during the winter.At 20°N/S,the peaks were a slight distance away from the topographic regions and might be the combined effect of nontopographic GWs and mountain waves.Near the Equator,the peaks were mainly above the regions with the lowest sea level altitude and may have resulted from convection.Our results indicate that even above the local regions with lower sea level altitudes compared with the Andes and Tibetan Plateau,the GWPE also exhibits fine structures in geographic distributions.We found that dissipation layers above the tropopause jet provide the body force to generate secondary waves in the upper stratosphere,especially during the winter months of each hemisphere and at latitudes of greater than 20°N/S.展开更多
Inactive elemental doping is commonly used to improve the structural stability of high-voltage layered transition-metal oxide cathodes.However,the one-step co-doping strategy usually results in small grain size since ...Inactive elemental doping is commonly used to improve the structural stability of high-voltage layered transition-metal oxide cathodes.However,the one-step co-doping strategy usually results in small grain size since the low diffusivity ions such as Ti^(4+)will be concentrated on grain boundaries,which hinders the grain growth.In order to synthesize large single-crystal layered oxide cathodes,considering the different diffusivities of different dopant ions,we propose a simple two-step multi-element co-doping strategy to fabricate core–shell structured LiCoO_(2)(CS-LCO).In the current work,the high-diffusivity Al^(3+)/Mg^(2+)ions occupy the core of single-crystal grain while the low diffusivity Ti^(4+)ions enrich the shell layer.The Ti^(4+)-enriched shell layer(~12 nm)with Co/Ti substitution and stronger Ti–O bond gives rise to less oxygen ligand holes.In-situ XRD demonstrates the constrained contraction of c-axis lattice parameter and mitigated structural distortion.Under a high upper cut-off voltage of 4.6 V,the single-crystal CS-LCO maintains a reversible capacity of 159.8 mAh g^(−1)with a good retention of~89%after 300 cycles,and reaches a high specific capacity of 163.8 mAh g^(−1)at 5C.The proposed strategy can be extended to other pairs of low-(Zr^(4+),Ta^(5+),and W6+,etc.)and high-diffusivity cations(Zn^(2+),Ni^(2+),and Fe^(3+),etc.)for rational design of advanced layered oxide core–shell structured cathodes for lithium-ion batteries.展开更多
Electrocatalytic reduction of CO_(2)(CO_(2)RR)to multicarbon products is an efficient approach for ad-dressing the energy crisis and achieving carbon neutrality.In H-cells,achieving high-current C_(2)products is chall...Electrocatalytic reduction of CO_(2)(CO_(2)RR)to multicarbon products is an efficient approach for ad-dressing the energy crisis and achieving carbon neutrality.In H-cells,achieving high-current C_(2)products is challenging because of the inefficient mass transfer of the catalyst and the presence of the hydrogen evolution reaction(HER).In this study,dendritic Cu/Cu_(2)O with abundant Cu^(0)/Cu^(+)interfaces and numerous dendritic curves was synthesized in a CO_(2)atmosphere,resulting in the high selectivity and current density of the C_(2)products.Dendritic Cu/Cu_(2)O achieved a C_(2)Faradaic efficiency of 69.8%and a C_(2)partial current density of 129.5 mA cm^(-2)in an H-cell.Finite element simulations showed that a dendritic structure with a high curvature generates a strong electric field,leading to a localized CO_(2)concentration.Additionally,DRT analysis showed that a dendritic struc-ture with a high curvature actively adsorbed the surrounding high concentration of CO_(2),enhancing the mass transfer rate and achieving a high current density.During the experiment,the impact of the electronic structure on the performance of the catalyst was investigated by varying the atomic ratio of Cu^(0)/Cu^(+) on the catalyst surface,which resulted in improved ethylene selectivity.Under the optimal atomic ratio of Cu^(0)/Cu^(+),the charge transfer resistance was minimized,and the desorption rate of the intermediates was low,favoring C_(2) generation.Density functional theory calculations indicated that the Cu^(0)/Cu^(+) interfaces exhibited a lower Gibbs free energy for the rate-determining step,enhancing C_(2)H_(4) formation.The Cu/Cu_(2)O catalyst also exhibited a low Cu d-band center,which enhanced the adsorption stability of *CO on the surface and facilitated C_(2)formation.This observa-tion explained the higher yield of C_(2) products at the Cu^(0)/Cu^(+) interface than that of H_(2) under rapid mass transfer.The results of the net present value model showed that the H-cell holds promising industrial prospects,contingent upon it being a catalyst with both high selectivity and high current density.This approach of integrating the structure and composition provides new insights for ad-vancing the CO_(2)RR towards high-current C_(2) products.展开更多
Aim: This paper aims to evaluate disparities of type 2 diabetes structured health education programmes that is utilised within the communities. Design: systematic review, (a type of secondary research design) aiming t...Aim: This paper aims to evaluate disparities of type 2 diabetes structured health education programmes that is utilised within the communities. Design: systematic review, (a type of secondary research design) aiming to summarize the results of prior primary research studies on available evidence Community type 2 diabetes structured education (CT2DSHE). Methods: Research question: Type 2 diabetic structured health education within a community how effective is it? Qualitative Systematic review, defined as a way to get reliable and objective picture of current available evidence on the specific topic—(CT2DSHE), (Denscombe, 2021) through reflexivity synthesis of available data as an example. This is valuable in time constraints such as project assignments that must be met within specific time and also to bring together available evidence together [1]. Results: This review has shown that CT2DSHE is effective with seven out of the eleven authors supporting, three authors against and one was neutral, further showed that knowledge and skills acquired can last longer with patient activation improved among T2DM patients ideal for sustaining their self-management of T2DM. Conclusion: This research provides suggestive answers to the research question: “Type 2 diabetic structured health education within a community how effective is it?”, This has demonstrated CT2DSHE effectiveness in knowledge acquisition and improving T2DM awareness among T2DM patients, whilst evidencing long effects beyond the study times of 3 - 9 months period in relation to patient activation. Also Identified diabetes education self-management on newly diagnosed (DESMOND) patient as CT2DSHE program for recommendation. Patient or Public Contribution: This work aspires to contribute to CT2DSHE in these areas;Influencing policy decision-making for community diabetes care within the UK and world at large., Contributing to already vast knowledge on diabetes self-management and reasons why?, Influencing educators on how CT2DSHEP are designed, delivered by putting the patient at the Centre and bringing different perspectives on CT2DSHEP in one place that is serving users time of having to consult several resources especially busy clinicians [2] [3].展开更多
Estimated ocean subsurface fields derived from satellite observations provide potential data sources for operational marine environmental monitoring and prediction systems.This study employs a statistic regression rec...Estimated ocean subsurface fields derived from satellite observations provide potential data sources for operational marine environmental monitoring and prediction systems.This study employs a statistic regression reconstruction method,in combination with domestic autonomous sea surface height and sea surface temperature observations from the Haiyang-2(HY-2)satellite fusion data,to establish an operational quasi-realtime three-dimensional(3D)temperature and salinity products over the Maritime Silk Road.These products feature a daily temporal resolution and a spatial resolution of 0.25°×0.25°and exhibit stability and continuity.We have demonstrated the accuracy of the reconstructed thermohaline fields in capturing the 3D thermohaline variations through comprehensive statistical evaluations,after comparing them against Argo observations and ocean analysis data from 2022.The results illustrate that the reconstructed fields effectively represent seasonal variations in oceanic subsurface structures,along with structural changes resulting from mesoscale processes,and the upper ocean’s responses to tropical cyclones.Furthermore,the incorporation of HY-2 satellite observations notably enhances the accuracy of temperature and salinity reconstructions in the Northwest Pacific Ocean and marginally improves salinity reconstruction accuracy in the North Indian Ocean when compared to the World Ocean Atlas 2018 monthly climatology thermohaline fields.As a result,the reconstructed product holds promise for providing quasi-real-time 3D temperature and salinity field information to facilitate fast decisionmaking during emergencies,and also offers foundational thermohaline fields for operational ocean reanalysis and forecasting systems.These contributions enhance the safety and stability of ocean subsurface activities and navigation.展开更多
Designing a step-scheme(S-scheme)heterojunction photocatalyst with vacancy engineering is a reliable approach to achieve highly efficient photocatalytic H_(2)production activity.Herein,a hollow ZnO/ZnS S-scheme hetero...Designing a step-scheme(S-scheme)heterojunction photocatalyst with vacancy engineering is a reliable approach to achieve highly efficient photocatalytic H_(2)production activity.Herein,a hollow ZnO/ZnS S-scheme heterojunction with O and Zn vacancies(VO,Zn-ZnO/ZnS)is rationally constructed via ion-exchange and calcination treatments.In such a photocatalytic system,the hollow structure combined with the introduction of dual vacancies endows the adequate light absorption.Moreover,the O and Zn vacancies serve as the trapping sites for photo-induced electrons and holes,respectively,which are beneficial for promoting the photo-induced carrier separation.Meanwhile,the S-scheme charge transfer mechanism can not only improve the separation and transfer efficiencies of photo-induced carrier but also retain the strong redox capacity.As expected,the optimized VO,Zn-ZnO/ZnS heterojunction exhibits a superior photocatalytic H_(2) production rate of 160.91 mmol g^(-1)h^(-1),approximately 643.6 times and 214.5 times with respect to that obtained on pure ZnO and ZnS,respectively.Simultaneously,the experimental results and density functional theory calculations disclose that the photo-induced carrier transfer pathway follows the S-scheme heterojunction mechanism and the introduction of O and Zn vacancies reduces the surface reaction barrier.This work provides an innovative strategy of vacancy engineering in S-scheme heterojunction for solar-to-fuel energy conversion.展开更多
The performance of the photodetector is significantly impacted by the inherent surface faults in GaAs nanowires(NWs).We combined three-dimensional(3D)gallium arsenide nanowires with zero-dimensional(0D)WS_(2) quantum ...The performance of the photodetector is significantly impacted by the inherent surface faults in GaAs nanowires(NWs).We combined three-dimensional(3D)gallium arsenide nanowires with zero-dimensional(0D)WS_(2) quantum dot(QDs)materials in a simple and convenient way to form a heterogeneous structure.Various performance enhancements have been realized through the formation of typeⅡenergy bands in heterostructures,opening up new research directions for the future development of photodetector devices.This work successfully fabricated a high-sensitivity photodetector based on WS_(2)QDs/GaAs NWs heterostructure.Under 660 nm laser excitation,the photodetector exhibits a responsivity of 368.07 A/W,a detectivity of 2.7×10^(12)Jones,an external quantum efficiency of 6.47×10^(2)%,a low-noise equivalent power of 2.27×10^(-17)W·Hz^(-1/2),a response time of 0.3 s,and a recovery time of 2.12 s.This study provides a new solution for the preparation of high-performance GaAs detectors and promotes the development of optoelectronic devices for GaAs NWs.展开更多
Development of metal oxide semiconductors-based methane sensors with good response and low power consumption is one of the major challenges to realize the real-time monitoring of methane leakage.In this work,a self-as...Development of metal oxide semiconductors-based methane sensors with good response and low power consumption is one of the major challenges to realize the real-time monitoring of methane leakage.In this work,a self-assembled mulberry-like ZnO/SnO_(2)hierarchical structure is constructed by a two-step hydrothermal method.The resultant sensor works at room temperature with excellent response of~56.1%to 2000 ppm CH_(4)at 55%relative humidity.It is found that the strain induced at the ZnO/SnO_(2)interface greatly enhances the piezoelectric polarization on the ZnO surface and that the band bending results in the accumulation of chemically adsorbed O_(2)^(-)ions close to the interface,leading to significant improvement in the sensing performance of the methane gas sensor at room temperature.展开更多
Mo_(2)C is an excellent electrocatalyst for hydrogen evolution reaction(HER).However,Mo_(2)C is a poor electrocatalyst for oxygen evolution reaction(OER).Herein,two different elements,namely Co and Fe,are incorporated...Mo_(2)C is an excellent electrocatalyst for hydrogen evolution reaction(HER).However,Mo_(2)C is a poor electrocatalyst for oxygen evolution reaction(OER).Herein,two different elements,namely Co and Fe,are incorporated in Mo_(2)C that,therefore,has a finely tuned electronic structure,which is not achievable by incorporation of any one of the metals.Consequently,the resulting electrocatalyst Co_(0.8)Fe_(0.2)-Mo_(2)C-80 displayed excellent OER catalytic performance,which is evidenced by a low overpotential of 214.0(and 246.5)mV to attain a current density of 10(and 50)mA cm^(-2),an ultralow Tafel slope of 38.4 mV dec^(-1),and longterm stability in alkaline medium.Theoretical data demonstrates that Co_(0.8)Fe_(0.2)-Mo_(2)C-80 requires the lowest overpotential(1.00 V)for OER and Co centers to be the active sites.The ultrahigh catalytic performance of the electrocatalyst is attributed to the excellent intrinsic catalytic activity due to high Brunauer-Emmett-Teller specific surface area,large electrochemically active surface area,small Tafel slope,and low chargetransfer resistance.展开更多
Atomically‐dispersed copper sites coordinated with nitrogen‐doped carbon(Cu–N–C)can provide novel possibilities to enable highly selective and active electrochemical CO_(2) reduction reactions.However,the construc...Atomically‐dispersed copper sites coordinated with nitrogen‐doped carbon(Cu–N–C)can provide novel possibilities to enable highly selective and active electrochemical CO_(2) reduction reactions.However,the construction of optimal local electronic structures for nitrogen‐coordinated Cu sites(Cu–N_(4))on carbon remains challenging.Here,we synthesized the Cu–N–C catalysts with atomically‐dispersed edge‐hosted Cu–N_(4) sites(Cu–N_(4)C_(8))located in a micropore between two graphitic sheets via a facile method to control the concentration of metal precursor.Edge‐hosted Cu–N_(4)C_(8) catalysts outperformed the previously reported M–N–C catalysts for CO_(2)‐to‐CO conversion,achieving a maximum CO Faradaic efficiency(FECO)of 96%,a CO current density of–8.97 mA cm^(–2) at–0.8 V versus reversible hydrogen electrode(RHE),and over FECO of 90%from–0.6 to–1.0 V versus RHE.Computational studies revealed that the micropore of the graphitic layer in edge‐hosted Cu–N_(4)C_(8) sites causes the d‐orbital energy level of the Cu atom to shift upward,which in return decreases the occupancy of antibonding states in the*COOH binding.This research suggests new insights into tailoring the locally coordinated structure of the electrocatalyst at the atomic scale to achieve highly selective electrocatalytic reactions.展开更多
The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in orde...The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in order to provide ultimate wear resistance based on the laser-irradiation-induced inclusion of N_(2) gas during laser powder bed fusion.This is substantialized based on both the thermal diffusion-and chemical reactionbased metallurgy of the Mg_(2)Si–SiC/nitride hybrid composite.This study also proposes a functional platform for systematically modulating a functionally graded structure and modeling build-direction-dependent architectonics during additive manufacturing.This strategy enables the development of a compositional gradient from the center to the edge of each melt pool of the Mg_(2)Si–SiC/nitride hybrid composite.Consequently,the coefficient of friction of the hybrid composite exhibits a 309.3%decrease to–1.67 compared to–0.54 for the conventional nonreinforced Mg_(2)Si structure,while the tensile strength exhibits a 171.3%increase to 831.5 MPa compared to 485.3 MPa for the conventional structure.This outstanding mechanical behavior is due to the(1)the complementary and synergistic reinforcement effects of the SiC and nitride compounds,each of which possesses an intrinsically high hardness,and(2)the strong adhesion of these compounds to the Mg_(2)Si matrix despite their small sizes and low concentrations.展开更多
Iron oxide(Fe_(2)O_(3))emerges as a highly attractive anode candidate among rapidly expanding energy storage market.Nonethe-less,its considerable volume changes during cycling as an electrode material result in a vast...Iron oxide(Fe_(2)O_(3))emerges as a highly attractive anode candidate among rapidly expanding energy storage market.Nonethe-less,its considerable volume changes during cycling as an electrode material result in a vast reduced battery cycle life.In this work,an ap-proach is pioneered for preparing high-performance Fe_(2)O_(3)anode materials,by innovatively synthesizing a triple-layer yolk-shell Fe_(2)O_(3)uniformly coated with a conductive polypyrrole(Ppy)layer(Fe_(2)O_(3)@Ppy-TLY).The uniform polypyrrole coating introduces more reac-tion sites and adsorption sites,and maintains structure stability through charge-discharge process.In the uses as lithium-ion battery elec-trodes,Fe_(2)O_(3)@Ppy-TLY demonstrates high reversible specific capacity(maintaining a discharge capacity of 1375.11 mAh·g^(−1)after 500 cycles at 1 C),exceptional cycling stability(retaining the steady charge-discharge performance at 544.33 mAh·g^(−1)after 6000 ultrafast charge-discharge cycles at a 10 C current density),and outstanding high current charge-discharge performance(retaining a reversible ca-pacity of 156.75 mAh·g^(−1)after 10000 cycles at 15 C),thereby exhibiting superior lithium storage performance.This work introduces in-novative advancements for Fe_(2)O_(3)anode design,aiming to enhance its performance in energy storage fields.展开更多
Li-rich layered oxide(LRLO)cathodes have been regarded as promising candidates for next-generation Li-ion batteries due to their exceptionally high energy density,which combines cationic and anionic redox activities.H...Li-rich layered oxide(LRLO)cathodes have been regarded as promising candidates for next-generation Li-ion batteries due to their exceptionally high energy density,which combines cationic and anionic redox activities.However,continuous voltage decay during cycling remains the primary obstacle for practical applications,which has yet to be fundamentally addressed.It is widely acknowledged that voltage decay originates from the irreversible migration of transition metal ions,which usually further exacerbates structural evolution and aggravates the irreversible oxygen redox reactions.Recently,constructing O2-type structure has been considered one of the most promising approaches for inhibiting voltage decay.In this review,the relationship between voltage decay and structural evolution is systematically elucidated.Strategies to suppress voltage decay are systematically summarized.Additionally,the design of O2-type structure and the corresponding mechanism of suppressing voltage decay are comprehensively discussed.Unfortunately,the reported O2-type LRLO cathodes still exhibit partially disordered structure with extended cycles.Herein,the factors that may cause the irreversible transition metal migrations in O2-type LRLO materials are also explored,while the perspectives and challenges for designing high-performance O2-type LRLO cathodes without voltage decay are proposed.展开更多
Earth-abundant and nontoxic Sn-based materials have been regarded as promising catalysts for the electrochemical conversion of CO_(2)to C1 products,e.g.,CO and formate.However,it is still difficult for Snbased materia...Earth-abundant and nontoxic Sn-based materials have been regarded as promising catalysts for the electrochemical conversion of CO_(2)to C1 products,e.g.,CO and formate.However,it is still difficult for Snbased materials to obtain satisfactory performance at low-to-moderate overpotentials.Herein,a simple and facile electrospinning technique is utilized to prepare a composite of a bimetallic Sn-Co oxide/carbon matrix with a hollow nanotube structure(Sn Co-HNT).Sn Co-HNT can maintain>90%faradaic efficiencies for C1 products within a wide potential range from-0.6 VRHE to-1.2 VRHE,and a highest 94.1%selectivity towards CO in an H-type cell.Moreover,a 91.2%faradaic efficiency with a 241.3 m A cm^(-2)partial current density for C1 products could be achieved using a flow cell.According to theoretical calculations,the fusing of Sn/Co oxides on the carbon matrix accelerates electron transfer at the atomic level,causing electron deficiency of Sn centers and reversible variation between Co^(2+)and Co^(3+)centers.The synergistic effect of the Sn/Co composition improves the electron affinity of the catalyst surface,which is conducive to the adsorption and stabilization of key intermediates and eventually increases the catalytic activity in CO_(2)electroreduction.This study could provide a new strategy for the construction of oxide-derived catalysts for CO_(2)electroreduction.展开更多
MoS_(2) is a promising anode material in sodium-ion battery technologies for possessing high theoretical capacity.However,the sluggish Na^(+) diffusion kinetics and low electronic conductivity hinder the promises.Here...MoS_(2) is a promising anode material in sodium-ion battery technologies for possessing high theoretical capacity.However,the sluggish Na^(+) diffusion kinetics and low electronic conductivity hinder the promises.Herein,a unique MoS_(2)/FeS_(2)/C heterojunction with abundant defects and hollow structure(MFCHHS)was constructed.The synergy of defect engineering in MoS_(2),FeS_(2),and the carbon layer of MFCHHS with a larger specific surface area provides multiple storage sites of Na^(+)corresponding to the surface-controlled process.The MoS_(2)/FeS_(2)/C heterostructure and rich defects in MoS_(2) and carbon layer lower the Na^(+) diffusion energy barrier.Additionally,the construction of MoS_(2)/FeS_(2) heterojunction promotes electron transfer at the interface,accompanying with excellent conductivity of the carbon layer to facilitate reversible electrochemical reactions.The abundant defects and mismatches at the interface of MoS_(2)/FeS_(2) and MoS_(2)/C heterojunctions could relieve lattice stress and volume change sequentially.As a result,the MFCHHS anode exhibits the high capacity of 613.1 mA h g^(-1)at 0.5 A g^(-1) and 306.1 mA h g^(-1) at 20 A g^(-1).The capacity retention of 85.0%after 1400 cycles at 5.0 A g^(-1) is achieved.The density functional theory(DFT)calculation and in situ transmission electron microscope(TEM),Raman,ex-situ X-ray photon spectroscopy(XPS)studies confirm the low volume change during intercalation/deintercalation process and the efficient Na^(+)storage in the layered structure of MoS_(2) and carbon layer,as well as the defects and heterostructures in MFCHHS.We believe this work could provide an inspiration for constructing heterojunction with abundant defects to foster fast electron and Na^(+) diffusion kinetics,resulting in excellent rate capability and cycling stability.展开更多
Lithium metal anode is almost the ultimate choice for high-energy density rechargeable batteries, but its uneven electrochemical dissolution-deposition characteristics lead to poor cycle stability and lithium dendrite...Lithium metal anode is almost the ultimate choice for high-energy density rechargeable batteries, but its uneven electrochemical dissolution-deposition characteristics lead to poor cycle stability and lithium dendrites safety problems. The fundamental solution to the problems is to interfere electrodeposition process of lithium metal so that it can be carried out reversibly and stably. In this work, an inverse-opal structured TiO2membrane with a thickness of only ~1 μm is designed to regulate the electrodeposition behavior of lithium metal, in which the ordered channels homogenize mass transfer process, the anatase TiO_(2)walls of the ion channels reduce desolvation barrier of solvated lithium-ions, and the spherical cavities with a diameter of ~300 nm confine migration of the adsorbed lithium atoms during electrocrystallization to diminish overpotential of lithium. These systematic effects cover and essentially change the whole process of electrodeposition of lithium metal and eliminate the possibility of lithium dendrite formation. The as-obtained lithium metal electrode delivers a Coulombic efficiency of 99.86% in the 100th cycle, and maintains a low deposition overpotential of 0.01 V for 800 h.展开更多
In the traditional process, m-phenylenediamine reacts with fuming sulfuric acid at high temperature to get intermediates, and then after dehydration occurs intramolecular rearrangement to get 2,4-diaminobenzenesulfoni...In the traditional process, m-phenylenediamine reacts with fuming sulfuric acid at high temperature to get intermediates, and then after dehydration occurs intramolecular rearrangement to get 2,4-diaminobenzenesulfonic acid. Traditional methods need to consume a lot of fuming sulfuric acid or concentrated sulfuric acid, resulting in high industrial large-scale production cost, more waste, and posing a serious environmental pollution risk. In this thesis, three different sulfonation reagents were used for the sulfonation reaction of m-phenylenediamine, and the reaction mechanisms and crystal structures of the three pathways were investigated. The three routes are: 1) one-step synthesis of monosulfonated compound 1 from raw material and sulfur trioxide (SO<sub>3</sub>);2) rapid reaction of raw material and chlorosulfonic acid to synthesize bisulfonated compound 2;3) direct eutectic crystallization of raw material and ordinary sulfuric acid to obtain compound 3. The crystal structure of the compounds synthesized by three paths was analyzed by X-ray single crystal diffraction, and compound 1 was characterized by NMR, Fourier infrared spectra, UV-visible spectrum and Mass spectrometry. The one-step synthesis of SO<sub>3</sub> as a sulfonation reagent has the advantages of mild reaction conditions, simple operation and low cost.展开更多
Focused exploration of earth-abundant and cost-efficient non-noble metal electrocatalysts with superior hydrogen evolution reaction(HER)performance is very important for large-scale and efficient electrolysis of water...Focused exploration of earth-abundant and cost-efficient non-noble metal electrocatalysts with superior hydrogen evolution reaction(HER)performance is very important for large-scale and efficient electrolysis of water.Herein,a sandwich composite structure(designed as MS-Mo2C@NCNS)ofβ-Mo2C hollow nanotubes(HNT)and N-doped carbon nanosheets(NCNS)is designed and prepared using a binary NaCl–KCl molten salt(MS)strategy for HER.The temperature-dominant Kirkendall formation mechanism is tentatively proposed for such a three-dimensional hierarchical framework.Due to its attractive structure and componential synergism,MS-Mo2C@NCNS exposes more effective active sites,confers robust structural stability,and shows significant electrocatalytic activity/stability in HER,with a current density of 10 mA cm-2 and an overpotential of only 98 mV in 1 M KOH.Density functional theory calculations point to the synergistic effect of Mo2C HNT and NCNS,leading to enhanced electronic transport and suitable adsorption free energies of H*(ΔGH*)on the surface of electroactive Mo2C.More significantly,the MS-assisted synthetic methodology here provides an enormous perspective for the commercial development of highly active non-noble metal electrocatalysts toward efficient hydrogen evolution.展开更多
基金Joint Fund of Research and Development Program of Henan Province,Grant/Award Number:222301420002National Natural Science Foundation of China,Grant/Award Number:U21A2064Scientific and Technological Innovation Talents in Colleges and Universities in Henan Province,Grant/Award Number:22HASTIT001。
文摘Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric constant of Ti_(3)C_(2)T_(x)MXene,we have successfully synthesized core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres.This architecture,comprising SiO_(2) as the core,MXene as the intermediate layer,and MoS_(2) as the outer shell,is achieved through an electrostatic self‐assembly method combined with a hydrothermal process.This complex core‐shell structure not only provides a variety of loss mechanisms that effectively dissipate electromagnetic energy but also prevents self‐aggregation of MXene and MoS_(2) nanosheets.Notably,the synergistic combination of SiO_(2) and MoS_(2) with highly conductive MXene enables the suitable dielectric constant of the composites,ensuring optimal impedance matching.Therefore,the core‐shell structured SiO_(2)@MXene@MoS_(2) nanospheres exhibit excellent EMW absorption performance,featuring a remarkable minimum reflection loss(RL_(min))of−52.11 dB(2.4 mm).It is noteworthy that these nanospheres achieve an ultra‐wide effective absorption bandwidth(EAB)of 6.72 GHz.This work provides a novel approach for designing and synthesizing high‐performance EMW absorbers characterized by“wide bandwidth and strong reflection loss.”
基金supported by the National Key R&D Program of China(2018YFC1900500)the Graduate Scientific Research and Innovation Foundation of Chongqing,China(Grant No.CYB20002).
文摘As a promising anode material for magnesium ion rechargeable batteries,magnesium metavanadate(MgV_(2)O_(6))has attracted considerable research interest in recent years.A MgV_(2)O_(6)sample was synthesized via a facile solid-state reaction by multistep-firing stoichiometric mixtures of MgO and V2O5 powder under an air atmosphere.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)occurred at 841 K and the enthalpy change was 4.37±0.04 kJ/mol.The endothermic effect at 1014 K and the enthalpy change was 26.54±0.26 kJ/mol,which is related to the incongruent melting ofβ-MgV_(2)O_(6).In situ XRD was performed to investigate phase transition of the as-prepared MgV_(2)O_(6)at high temperatures.The cell parameters obtained by Rietveld refinement indicated that it crystallizes in a monoclinic system with the C2/m space group,and the lattice parameters of a=9.280 A°,b=3.501 A°,c=6.731 A°,β=111.76°.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)was further studied by thermal kinetics,indicating that this process is controlled first by a fibril-like mechanism and then by a spherulitic-type mechanism with an increasing heating rate.Additionally,the enthalpy change of MgV_(2)O_(6)at high temperatures was measured utilizing the drop calorimetry,heat capacity was calculated and given as:Cp=208.3+0.03583T-4809000T^(−2)(298-923 K)(J mol^(−1)K^(−1)),the high-temperature heat capacity can be used to calculate Gibbs free energy of MgV_(2)O_(6)at high temperatures.
基金the National Natural Science Foundation of China(Grant Nos.41831073,42174196,and 42374205)the Project of Stable Support for Youth Team in Basic Research Field,Chinese Academy of Sciences(CAS+4 种基金Grant No.YSBR-018)the Informatization Plan of CAS(Grant No.CAS-WX2021PY-0101)the Youth Cross Team Scientific Research project of the Chinese Academy of Sciences(Grant No.JCTD-2021-10)the Open Research Project of Large Research Infrastructures of CAS titled“Study on the Interaction Between Low-/Mid-Latitude Atmosphere and Ionosphere Based on the Chinese Meridian Project.”This work was also supported in part by the Specialized Research Fund and the Open Research Program of the State Key Laboratory of Space Weather.
文摘We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation Observing System for Meteorology,Ionosphere,and Climate-2(COSMIC-2)satellite.Owing to the dense sampling of COSMIC-2,in addition to the strong peaks of gravity wave potential energy(GWPE)above the Andes and Tibetan Plateau,we found weak peaks above the Rocky,Atlas,Caucasus,and Tianshan Mountains.The land-sea contrast is responsible for the longitudinal variations of the GWPE in the lower and upper stratosphere.At 40°N/S,the peaks were mainly above the topographic regions during the winter.At 20°N/S,the peaks were a slight distance away from the topographic regions and might be the combined effect of nontopographic GWs and mountain waves.Near the Equator,the peaks were mainly above the regions with the lowest sea level altitude and may have resulted from convection.Our results indicate that even above the local regions with lower sea level altitudes compared with the Andes and Tibetan Plateau,the GWPE also exhibits fine structures in geographic distributions.We found that dissipation layers above the tropopause jet provide the body force to generate secondary waves in the upper stratosphere,especially during the winter months of each hemisphere and at latitudes of greater than 20°N/S.
基金the Hong Kong Polytechnic University(Q-CDBG),the Science and Technology Program of Guangdong Province of China(2020A0505090001)the Research Grants Council of the Hong Kong Special Administrative Region,China(Project No.PolyU152178/20E)+2 种基金the National Natural Science Foundation of China(22379052)the Natural Science Foundation of Guangdong(No.2022A1515011667)China Postdoctoral Science Foundation(2021T140268).
文摘Inactive elemental doping is commonly used to improve the structural stability of high-voltage layered transition-metal oxide cathodes.However,the one-step co-doping strategy usually results in small grain size since the low diffusivity ions such as Ti^(4+)will be concentrated on grain boundaries,which hinders the grain growth.In order to synthesize large single-crystal layered oxide cathodes,considering the different diffusivities of different dopant ions,we propose a simple two-step multi-element co-doping strategy to fabricate core–shell structured LiCoO_(2)(CS-LCO).In the current work,the high-diffusivity Al^(3+)/Mg^(2+)ions occupy the core of single-crystal grain while the low diffusivity Ti^(4+)ions enrich the shell layer.The Ti^(4+)-enriched shell layer(~12 nm)with Co/Ti substitution and stronger Ti–O bond gives rise to less oxygen ligand holes.In-situ XRD demonstrates the constrained contraction of c-axis lattice parameter and mitigated structural distortion.Under a high upper cut-off voltage of 4.6 V,the single-crystal CS-LCO maintains a reversible capacity of 159.8 mAh g^(−1)with a good retention of~89%after 300 cycles,and reaches a high specific capacity of 163.8 mAh g^(−1)at 5C.The proposed strategy can be extended to other pairs of low-(Zr^(4+),Ta^(5+),and W6+,etc.)and high-diffusivity cations(Zn^(2+),Ni^(2+),and Fe^(3+),etc.)for rational design of advanced layered oxide core–shell structured cathodes for lithium-ion batteries.
文摘Electrocatalytic reduction of CO_(2)(CO_(2)RR)to multicarbon products is an efficient approach for ad-dressing the energy crisis and achieving carbon neutrality.In H-cells,achieving high-current C_(2)products is challenging because of the inefficient mass transfer of the catalyst and the presence of the hydrogen evolution reaction(HER).In this study,dendritic Cu/Cu_(2)O with abundant Cu^(0)/Cu^(+)interfaces and numerous dendritic curves was synthesized in a CO_(2)atmosphere,resulting in the high selectivity and current density of the C_(2)products.Dendritic Cu/Cu_(2)O achieved a C_(2)Faradaic efficiency of 69.8%and a C_(2)partial current density of 129.5 mA cm^(-2)in an H-cell.Finite element simulations showed that a dendritic structure with a high curvature generates a strong electric field,leading to a localized CO_(2)concentration.Additionally,DRT analysis showed that a dendritic struc-ture with a high curvature actively adsorbed the surrounding high concentration of CO_(2),enhancing the mass transfer rate and achieving a high current density.During the experiment,the impact of the electronic structure on the performance of the catalyst was investigated by varying the atomic ratio of Cu^(0)/Cu^(+) on the catalyst surface,which resulted in improved ethylene selectivity.Under the optimal atomic ratio of Cu^(0)/Cu^(+),the charge transfer resistance was minimized,and the desorption rate of the intermediates was low,favoring C_(2) generation.Density functional theory calculations indicated that the Cu^(0)/Cu^(+) interfaces exhibited a lower Gibbs free energy for the rate-determining step,enhancing C_(2)H_(4) formation.The Cu/Cu_(2)O catalyst also exhibited a low Cu d-band center,which enhanced the adsorption stability of *CO on the surface and facilitated C_(2)formation.This observa-tion explained the higher yield of C_(2) products at the Cu^(0)/Cu^(+) interface than that of H_(2) under rapid mass transfer.The results of the net present value model showed that the H-cell holds promising industrial prospects,contingent upon it being a catalyst with both high selectivity and high current density.This approach of integrating the structure and composition provides new insights for ad-vancing the CO_(2)RR towards high-current C_(2) products.
文摘Aim: This paper aims to evaluate disparities of type 2 diabetes structured health education programmes that is utilised within the communities. Design: systematic review, (a type of secondary research design) aiming to summarize the results of prior primary research studies on available evidence Community type 2 diabetes structured education (CT2DSHE). Methods: Research question: Type 2 diabetic structured health education within a community how effective is it? Qualitative Systematic review, defined as a way to get reliable and objective picture of current available evidence on the specific topic—(CT2DSHE), (Denscombe, 2021) through reflexivity synthesis of available data as an example. This is valuable in time constraints such as project assignments that must be met within specific time and also to bring together available evidence together [1]. Results: This review has shown that CT2DSHE is effective with seven out of the eleven authors supporting, three authors against and one was neutral, further showed that knowledge and skills acquired can last longer with patient activation improved among T2DM patients ideal for sustaining their self-management of T2DM. Conclusion: This research provides suggestive answers to the research question: “Type 2 diabetic structured health education within a community how effective is it?”, This has demonstrated CT2DSHE effectiveness in knowledge acquisition and improving T2DM awareness among T2DM patients, whilst evidencing long effects beyond the study times of 3 - 9 months period in relation to patient activation. Also Identified diabetes education self-management on newly diagnosed (DESMOND) patient as CT2DSHE program for recommendation. Patient or Public Contribution: This work aspires to contribute to CT2DSHE in these areas;Influencing policy decision-making for community diabetes care within the UK and world at large., Contributing to already vast knowledge on diabetes self-management and reasons why?, Influencing educators on how CT2DSHEP are designed, delivered by putting the patient at the Centre and bringing different perspectives on CT2DSHEP in one place that is serving users time of having to consult several resources especially busy clinicians [2] [3].
基金The China-ASEAN Marine Cooperation Foundationthe Fundamental Research Funds for the Central Universities under contract No.B210203041+1 种基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province under contract No.KYCX23_0657the opening project of the Key Laboratory of Marine Environmental Information Technology of Ministry of Natural Resources under contract No.521037412.
文摘Estimated ocean subsurface fields derived from satellite observations provide potential data sources for operational marine environmental monitoring and prediction systems.This study employs a statistic regression reconstruction method,in combination with domestic autonomous sea surface height and sea surface temperature observations from the Haiyang-2(HY-2)satellite fusion data,to establish an operational quasi-realtime three-dimensional(3D)temperature and salinity products over the Maritime Silk Road.These products feature a daily temporal resolution and a spatial resolution of 0.25°×0.25°and exhibit stability and continuity.We have demonstrated the accuracy of the reconstructed thermohaline fields in capturing the 3D thermohaline variations through comprehensive statistical evaluations,after comparing them against Argo observations and ocean analysis data from 2022.The results illustrate that the reconstructed fields effectively represent seasonal variations in oceanic subsurface structures,along with structural changes resulting from mesoscale processes,and the upper ocean’s responses to tropical cyclones.Furthermore,the incorporation of HY-2 satellite observations notably enhances the accuracy of temperature and salinity reconstructions in the Northwest Pacific Ocean and marginally improves salinity reconstruction accuracy in the North Indian Ocean when compared to the World Ocean Atlas 2018 monthly climatology thermohaline fields.As a result,the reconstructed product holds promise for providing quasi-real-time 3D temperature and salinity field information to facilitate fast decisionmaking during emergencies,and also offers foundational thermohaline fields for operational ocean reanalysis and forecasting systems.These contributions enhance the safety and stability of ocean subsurface activities and navigation.
文摘Designing a step-scheme(S-scheme)heterojunction photocatalyst with vacancy engineering is a reliable approach to achieve highly efficient photocatalytic H_(2)production activity.Herein,a hollow ZnO/ZnS S-scheme heterojunction with O and Zn vacancies(VO,Zn-ZnO/ZnS)is rationally constructed via ion-exchange and calcination treatments.In such a photocatalytic system,the hollow structure combined with the introduction of dual vacancies endows the adequate light absorption.Moreover,the O and Zn vacancies serve as the trapping sites for photo-induced electrons and holes,respectively,which are beneficial for promoting the photo-induced carrier separation.Meanwhile,the S-scheme charge transfer mechanism can not only improve the separation and transfer efficiencies of photo-induced carrier but also retain the strong redox capacity.As expected,the optimized VO,Zn-ZnO/ZnS heterojunction exhibits a superior photocatalytic H_(2) production rate of 160.91 mmol g^(-1)h^(-1),approximately 643.6 times and 214.5 times with respect to that obtained on pure ZnO and ZnS,respectively.Simultaneously,the experimental results and density functional theory calculations disclose that the photo-induced carrier transfer pathway follows the S-scheme heterojunction mechanism and the introduction of O and Zn vacancies reduces the surface reaction barrier.This work provides an innovative strategy of vacancy engineering in S-scheme heterojunction for solar-to-fuel energy conversion.
文摘The performance of the photodetector is significantly impacted by the inherent surface faults in GaAs nanowires(NWs).We combined three-dimensional(3D)gallium arsenide nanowires with zero-dimensional(0D)WS_(2) quantum dot(QDs)materials in a simple and convenient way to form a heterogeneous structure.Various performance enhancements have been realized through the formation of typeⅡenergy bands in heterostructures,opening up new research directions for the future development of photodetector devices.This work successfully fabricated a high-sensitivity photodetector based on WS_(2)QDs/GaAs NWs heterostructure.Under 660 nm laser excitation,the photodetector exhibits a responsivity of 368.07 A/W,a detectivity of 2.7×10^(12)Jones,an external quantum efficiency of 6.47×10^(2)%,a low-noise equivalent power of 2.27×10^(-17)W·Hz^(-1/2),a response time of 0.3 s,and a recovery time of 2.12 s.This study provides a new solution for the preparation of high-performance GaAs detectors and promotes the development of optoelectronic devices for GaAs NWs.
基金financially supported by the National Natural Science Foundation of China(No.12174092,21902046,U21A20500)Overseas Expertise Introduction Center for Discipline Innovation(D18025)+1 种基金Hubei Provincial Department of Science and Technology(No.2019CFA079)Wuhan Science and Technology Bureau(2020010601012163)
文摘Development of metal oxide semiconductors-based methane sensors with good response and low power consumption is one of the major challenges to realize the real-time monitoring of methane leakage.In this work,a self-assembled mulberry-like ZnO/SnO_(2)hierarchical structure is constructed by a two-step hydrothermal method.The resultant sensor works at room temperature with excellent response of~56.1%to 2000 ppm CH_(4)at 55%relative humidity.It is found that the strain induced at the ZnO/SnO_(2)interface greatly enhances the piezoelectric polarization on the ZnO surface and that the band bending results in the accumulation of chemically adsorbed O_(2)^(-)ions close to the interface,leading to significant improvement in the sensing performance of the methane gas sensor at room temperature.
基金financial support from the SERB-SURE under file number of SUR/2022/003129Jong Hyeok Park acknowledges the support of the National Research Foundation of Korea (NRF)funded by the Ministry of Science and ICT (RS-2023-00302697,RS-2023-00268523).
文摘Mo_(2)C is an excellent electrocatalyst for hydrogen evolution reaction(HER).However,Mo_(2)C is a poor electrocatalyst for oxygen evolution reaction(OER).Herein,two different elements,namely Co and Fe,are incorporated in Mo_(2)C that,therefore,has a finely tuned electronic structure,which is not achievable by incorporation of any one of the metals.Consequently,the resulting electrocatalyst Co_(0.8)Fe_(0.2)-Mo_(2)C-80 displayed excellent OER catalytic performance,which is evidenced by a low overpotential of 214.0(and 246.5)mV to attain a current density of 10(and 50)mA cm^(-2),an ultralow Tafel slope of 38.4 mV dec^(-1),and longterm stability in alkaline medium.Theoretical data demonstrates that Co_(0.8)Fe_(0.2)-Mo_(2)C-80 requires the lowest overpotential(1.00 V)for OER and Co centers to be the active sites.The ultrahigh catalytic performance of the electrocatalyst is attributed to the excellent intrinsic catalytic activity due to high Brunauer-Emmett-Teller specific surface area,large electrochemically active surface area,small Tafel slope,and low chargetransfer resistance.
基金National Research Foundation of Korea,Grant/Award Numbers:NRF‐2019M3D1A1079303,NRF‐2021R1A2C1011415,NRF‐2021R1A2C3004019。
文摘Atomically‐dispersed copper sites coordinated with nitrogen‐doped carbon(Cu–N–C)can provide novel possibilities to enable highly selective and active electrochemical CO_(2) reduction reactions.However,the construction of optimal local electronic structures for nitrogen‐coordinated Cu sites(Cu–N_(4))on carbon remains challenging.Here,we synthesized the Cu–N–C catalysts with atomically‐dispersed edge‐hosted Cu–N_(4) sites(Cu–N_(4)C_(8))located in a micropore between two graphitic sheets via a facile method to control the concentration of metal precursor.Edge‐hosted Cu–N_(4)C_(8) catalysts outperformed the previously reported M–N–C catalysts for CO_(2)‐to‐CO conversion,achieving a maximum CO Faradaic efficiency(FECO)of 96%,a CO current density of–8.97 mA cm^(–2) at–0.8 V versus reversible hydrogen electrode(RHE),and over FECO of 90%from–0.6 to–1.0 V versus RHE.Computational studies revealed that the micropore of the graphitic layer in edge‐hosted Cu–N_(4)C_(8) sites causes the d‐orbital energy level of the Cu atom to shift upward,which in return decreases the occupancy of antibonding states in the*COOH binding.This research suggests new insights into tailoring the locally coordinated structure of the electrocatalyst at the atomic scale to achieve highly selective electrocatalytic reactions.
基金supported by the Learning & Academic Research Institution for Master’s and Ph.D. Students and Postdocs (LAMP) Program of the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education (No. RS-2023-00285353)supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (NRF-2021R1A2C3006662, NRF-2022R1A5A1030054, and 2021R1A2C1091301)+3 种基金the support from Natural Sciences and Engineering Research Council of Canada (NSERC)Canada Foundation for Innovation (CFI)Atlantic Canada Opportunities Agency (ACOA)the New Brunswick Innovation Foundation (NBIF)
文摘The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in order to provide ultimate wear resistance based on the laser-irradiation-induced inclusion of N_(2) gas during laser powder bed fusion.This is substantialized based on both the thermal diffusion-and chemical reactionbased metallurgy of the Mg_(2)Si–SiC/nitride hybrid composite.This study also proposes a functional platform for systematically modulating a functionally graded structure and modeling build-direction-dependent architectonics during additive manufacturing.This strategy enables the development of a compositional gradient from the center to the edge of each melt pool of the Mg_(2)Si–SiC/nitride hybrid composite.Consequently,the coefficient of friction of the hybrid composite exhibits a 309.3%decrease to–1.67 compared to–0.54 for the conventional nonreinforced Mg_(2)Si structure,while the tensile strength exhibits a 171.3%increase to 831.5 MPa compared to 485.3 MPa for the conventional structure.This outstanding mechanical behavior is due to the(1)the complementary and synergistic reinforcement effects of the SiC and nitride compounds,each of which possesses an intrinsically high hardness,and(2)the strong adhesion of these compounds to the Mg_(2)Si matrix despite their small sizes and low concentrations.
基金supported by the Natural Science Foundation of Jiangsu Province of China(No.BK20201008).
文摘Iron oxide(Fe_(2)O_(3))emerges as a highly attractive anode candidate among rapidly expanding energy storage market.Nonethe-less,its considerable volume changes during cycling as an electrode material result in a vast reduced battery cycle life.In this work,an ap-proach is pioneered for preparing high-performance Fe_(2)O_(3)anode materials,by innovatively synthesizing a triple-layer yolk-shell Fe_(2)O_(3)uniformly coated with a conductive polypyrrole(Ppy)layer(Fe_(2)O_(3)@Ppy-TLY).The uniform polypyrrole coating introduces more reac-tion sites and adsorption sites,and maintains structure stability through charge-discharge process.In the uses as lithium-ion battery elec-trodes,Fe_(2)O_(3)@Ppy-TLY demonstrates high reversible specific capacity(maintaining a discharge capacity of 1375.11 mAh·g^(−1)after 500 cycles at 1 C),exceptional cycling stability(retaining the steady charge-discharge performance at 544.33 mAh·g^(−1)after 6000 ultrafast charge-discharge cycles at a 10 C current density),and outstanding high current charge-discharge performance(retaining a reversible ca-pacity of 156.75 mAh·g^(−1)after 10000 cycles at 15 C),thereby exhibiting superior lithium storage performance.This work introduces in-novative advancements for Fe_(2)O_(3)anode design,aiming to enhance its performance in energy storage fields.
基金funded by the National Natural Science Foundation of China(Grant Nos.22279092 and 5202780089).
文摘Li-rich layered oxide(LRLO)cathodes have been regarded as promising candidates for next-generation Li-ion batteries due to their exceptionally high energy density,which combines cationic and anionic redox activities.However,continuous voltage decay during cycling remains the primary obstacle for practical applications,which has yet to be fundamentally addressed.It is widely acknowledged that voltage decay originates from the irreversible migration of transition metal ions,which usually further exacerbates structural evolution and aggravates the irreversible oxygen redox reactions.Recently,constructing O2-type structure has been considered one of the most promising approaches for inhibiting voltage decay.In this review,the relationship between voltage decay and structural evolution is systematically elucidated.Strategies to suppress voltage decay are systematically summarized.Additionally,the design of O2-type structure and the corresponding mechanism of suppressing voltage decay are comprehensively discussed.Unfortunately,the reported O2-type LRLO cathodes still exhibit partially disordered structure with extended cycles.Herein,the factors that may cause the irreversible transition metal migrations in O2-type LRLO materials are also explored,while the perspectives and challenges for designing high-performance O2-type LRLO cathodes without voltage decay are proposed.
基金supported by the National Natural Science Foundation of China(U21A20312,22172099,21975162,51902209)the Natural Science Foundation of Guangdong(2020A1515010840)the Shenzhen Science and Technology Program(SGDX20201103095802006,RCBS20200714114819161,JCYJ20190808111801674,JCYJ20200109105803806,RCYX20200714114535052)。
文摘Earth-abundant and nontoxic Sn-based materials have been regarded as promising catalysts for the electrochemical conversion of CO_(2)to C1 products,e.g.,CO and formate.However,it is still difficult for Snbased materials to obtain satisfactory performance at low-to-moderate overpotentials.Herein,a simple and facile electrospinning technique is utilized to prepare a composite of a bimetallic Sn-Co oxide/carbon matrix with a hollow nanotube structure(Sn Co-HNT).Sn Co-HNT can maintain>90%faradaic efficiencies for C1 products within a wide potential range from-0.6 VRHE to-1.2 VRHE,and a highest 94.1%selectivity towards CO in an H-type cell.Moreover,a 91.2%faradaic efficiency with a 241.3 m A cm^(-2)partial current density for C1 products could be achieved using a flow cell.According to theoretical calculations,the fusing of Sn/Co oxides on the carbon matrix accelerates electron transfer at the atomic level,causing electron deficiency of Sn centers and reversible variation between Co^(2+)and Co^(3+)centers.The synergistic effect of the Sn/Co composition improves the electron affinity of the catalyst surface,which is conducive to the adsorption and stabilization of key intermediates and eventually increases the catalytic activity in CO_(2)electroreduction.This study could provide a new strategy for the construction of oxide-derived catalysts for CO_(2)electroreduction.
基金the National Natural Science Foundation of China(NSFC)(22105059,22279112)the Talent Introduction Program of Hebei Agricultural University(YJ201810)+5 种基金the Youth Topnotch Talent Foundation of Hebei Provincial Universities(BJK2022023)the Natural Science Foundation of Hebei Province(B2022203018)the Fok Ying-Tong Education Foundation of China(171064)the Natural Science Foundation of Shandong Province,China(ZR2021QE192)the China Postdoctoral Science Foundation(2018M630747)the 333 Talent Program of Hebei Province(C20221018)for their support。
文摘MoS_(2) is a promising anode material in sodium-ion battery technologies for possessing high theoretical capacity.However,the sluggish Na^(+) diffusion kinetics and low electronic conductivity hinder the promises.Herein,a unique MoS_(2)/FeS_(2)/C heterojunction with abundant defects and hollow structure(MFCHHS)was constructed.The synergy of defect engineering in MoS_(2),FeS_(2),and the carbon layer of MFCHHS with a larger specific surface area provides multiple storage sites of Na^(+)corresponding to the surface-controlled process.The MoS_(2)/FeS_(2)/C heterostructure and rich defects in MoS_(2) and carbon layer lower the Na^(+) diffusion energy barrier.Additionally,the construction of MoS_(2)/FeS_(2) heterojunction promotes electron transfer at the interface,accompanying with excellent conductivity of the carbon layer to facilitate reversible electrochemical reactions.The abundant defects and mismatches at the interface of MoS_(2)/FeS_(2) and MoS_(2)/C heterojunctions could relieve lattice stress and volume change sequentially.As a result,the MFCHHS anode exhibits the high capacity of 613.1 mA h g^(-1)at 0.5 A g^(-1) and 306.1 mA h g^(-1) at 20 A g^(-1).The capacity retention of 85.0%after 1400 cycles at 5.0 A g^(-1) is achieved.The density functional theory(DFT)calculation and in situ transmission electron microscope(TEM),Raman,ex-situ X-ray photon spectroscopy(XPS)studies confirm the low volume change during intercalation/deintercalation process and the efficient Na^(+)storage in the layered structure of MoS_(2) and carbon layer,as well as the defects and heterostructures in MFCHHS.We believe this work could provide an inspiration for constructing heterojunction with abundant defects to foster fast electron and Na^(+) diffusion kinetics,resulting in excellent rate capability and cycling stability.
基金Financial supports from the National Key Research and Development Program (2016YFB0100200)National Natural Science Foundation of China (21935006)。
文摘Lithium metal anode is almost the ultimate choice for high-energy density rechargeable batteries, but its uneven electrochemical dissolution-deposition characteristics lead to poor cycle stability and lithium dendrites safety problems. The fundamental solution to the problems is to interfere electrodeposition process of lithium metal so that it can be carried out reversibly and stably. In this work, an inverse-opal structured TiO2membrane with a thickness of only ~1 μm is designed to regulate the electrodeposition behavior of lithium metal, in which the ordered channels homogenize mass transfer process, the anatase TiO_(2)walls of the ion channels reduce desolvation barrier of solvated lithium-ions, and the spherical cavities with a diameter of ~300 nm confine migration of the adsorbed lithium atoms during electrocrystallization to diminish overpotential of lithium. These systematic effects cover and essentially change the whole process of electrodeposition of lithium metal and eliminate the possibility of lithium dendrite formation. The as-obtained lithium metal electrode delivers a Coulombic efficiency of 99.86% in the 100th cycle, and maintains a low deposition overpotential of 0.01 V for 800 h.
文摘In the traditional process, m-phenylenediamine reacts with fuming sulfuric acid at high temperature to get intermediates, and then after dehydration occurs intramolecular rearrangement to get 2,4-diaminobenzenesulfonic acid. Traditional methods need to consume a lot of fuming sulfuric acid or concentrated sulfuric acid, resulting in high industrial large-scale production cost, more waste, and posing a serious environmental pollution risk. In this thesis, three different sulfonation reagents were used for the sulfonation reaction of m-phenylenediamine, and the reaction mechanisms and crystal structures of the three pathways were investigated. The three routes are: 1) one-step synthesis of monosulfonated compound 1 from raw material and sulfur trioxide (SO<sub>3</sub>);2) rapid reaction of raw material and chlorosulfonic acid to synthesize bisulfonated compound 2;3) direct eutectic crystallization of raw material and ordinary sulfuric acid to obtain compound 3. The crystal structure of the compounds synthesized by three paths was analyzed by X-ray single crystal diffraction, and compound 1 was characterized by NMR, Fourier infrared spectra, UV-visible spectrum and Mass spectrometry. The one-step synthesis of SO<sub>3</sub> as a sulfonation reagent has the advantages of mild reaction conditions, simple operation and low cost.
基金the National Natural Science Foundation of China(Nos.52072151,52171211,52102253,52271218,U22A20145)the Jinan Independent Innovative Team(2020GXRC015)+1 种基金the Major Program of Shandong Province Natural Science Foundation(ZR2021ZD05)the Science and Technology Program of University of Jinan(XKY2119).
文摘Focused exploration of earth-abundant and cost-efficient non-noble metal electrocatalysts with superior hydrogen evolution reaction(HER)performance is very important for large-scale and efficient electrolysis of water.Herein,a sandwich composite structure(designed as MS-Mo2C@NCNS)ofβ-Mo2C hollow nanotubes(HNT)and N-doped carbon nanosheets(NCNS)is designed and prepared using a binary NaCl–KCl molten salt(MS)strategy for HER.The temperature-dominant Kirkendall formation mechanism is tentatively proposed for such a three-dimensional hierarchical framework.Due to its attractive structure and componential synergism,MS-Mo2C@NCNS exposes more effective active sites,confers robust structural stability,and shows significant electrocatalytic activity/stability in HER,with a current density of 10 mA cm-2 and an overpotential of only 98 mV in 1 M KOH.Density functional theory calculations point to the synergistic effect of Mo2C HNT and NCNS,leading to enhanced electronic transport and suitable adsorption free energies of H*(ΔGH*)on the surface of electroactive Mo2C.More significantly,the MS-assisted synthetic methodology here provides an enormous perspective for the commercial development of highly active non-noble metal electrocatalysts toward efficient hydrogen evolution.