The methylation of 2-methylnaphthalene (2-MN) into 2,6-dimethylnaphthalene (2,6-DMN) was investigated over the solid acid catalysts. The results show that HZSM-5 modified by NH4F has better catalytic performance t...The methylation of 2-methylnaphthalene (2-MN) into 2,6-dimethylnaphthalene (2,6-DMN) was investigated over the solid acid catalysts. The results show that HZSM-5 modified by NH4F has better catalytic performance than parent HZSM-5 due to the decrease in the acidity. When NH4F/HZSM-5 is further modified by SrO, its catalytic activity decreases due to the decrease in the total acid amount and acidic strength. As a result, the comprehensive modification of NH4F and SrO leads to the inere, ase in the 2,6- DMN selectivity (2,6-DMN to DMN), up to 64.8% when 2-MN conversion is 10%. We calculated the ESP charge by density functional theory and the results show that the 6-position in 2-MN has higher ESP charge value than 7-position. The formation of 2,6-DMN is favored energetically as compared to that for 2,7-DMN. This suggests during the alkylation of 2-MN inside the ZSM-5 channel, the formation of 2,6-DMN is favored electronically than that of 2,7-DMN. Hence, lowering the acidity of catalyst is a key factor to obtain high selectivity of 2,6-DMN.展开更多
分别采用盐酸、草酸、柠檬酸对晶种引导的无模板剂合成的纳米ZSM-5分子筛进行脱铝改性,利用XRD、N2吸附-脱附、27 Al NMR、XRF、NH3-TPD、Py-IR等方法对其进行表征,并考察了不同种类的酸脱铝对ZSM-5分子筛的结构、酸性及其催化萘与甲醇...分别采用盐酸、草酸、柠檬酸对晶种引导的无模板剂合成的纳米ZSM-5分子筛进行脱铝改性,利用XRD、N2吸附-脱附、27 Al NMR、XRF、NH3-TPD、Py-IR等方法对其进行表征,并考察了不同种类的酸脱铝对ZSM-5分子筛的结构、酸性及其催化萘与甲醇的烷基化反应性能的影响。结果表明,盐酸、柠檬酸与草酸均可脱除分子筛的骨架铝和非骨架铝,但3种酸对分子筛的脱铝程度不同。纳米ZSM-5分子筛经酸脱铝后,在脱除了部分强酸中心的同时产生了一定比例的二次介孔,有效地改善了反应物和产物的扩散性能,使催化萘与甲醇的烷基化反应的萘转化率、2,6-二甲基萘(2,6-DMN)选择性和产物中n(2,6-DMN)/n(2,7-DMN)均有不同程度的提高,并且表现出更强的抗失活能力。展开更多
文摘The methylation of 2-methylnaphthalene (2-MN) into 2,6-dimethylnaphthalene (2,6-DMN) was investigated over the solid acid catalysts. The results show that HZSM-5 modified by NH4F has better catalytic performance than parent HZSM-5 due to the decrease in the acidity. When NH4F/HZSM-5 is further modified by SrO, its catalytic activity decreases due to the decrease in the total acid amount and acidic strength. As a result, the comprehensive modification of NH4F and SrO leads to the inere, ase in the 2,6- DMN selectivity (2,6-DMN to DMN), up to 64.8% when 2-MN conversion is 10%. We calculated the ESP charge by density functional theory and the results show that the 6-position in 2-MN has higher ESP charge value than 7-position. The formation of 2,6-DMN is favored energetically as compared to that for 2,7-DMN. This suggests during the alkylation of 2-MN inside the ZSM-5 channel, the formation of 2,6-DMN is favored electronically than that of 2,7-DMN. Hence, lowering the acidity of catalyst is a key factor to obtain high selectivity of 2,6-DMN.
文摘分别采用盐酸、草酸、柠檬酸对晶种引导的无模板剂合成的纳米ZSM-5分子筛进行脱铝改性,利用XRD、N2吸附-脱附、27 Al NMR、XRF、NH3-TPD、Py-IR等方法对其进行表征,并考察了不同种类的酸脱铝对ZSM-5分子筛的结构、酸性及其催化萘与甲醇的烷基化反应性能的影响。结果表明,盐酸、柠檬酸与草酸均可脱除分子筛的骨架铝和非骨架铝,但3种酸对分子筛的脱铝程度不同。纳米ZSM-5分子筛经酸脱铝后,在脱除了部分强酸中心的同时产生了一定比例的二次介孔,有效地改善了反应物和产物的扩散性能,使催化萘与甲醇的烷基化反应的萘转化率、2,6-二甲基萘(2,6-DMN)选择性和产物中n(2,6-DMN)/n(2,7-DMN)均有不同程度的提高,并且表现出更强的抗失活能力。