Third-order nonlinear optical (NLO) materials have broad application prospects in high-density data storage, optical computer, modern laser technology, and other high-tech industries. The structures and frequencies of...Third-order nonlinear optical (NLO) materials have broad application prospects in high-density data storage, optical computer, modern laser technology, and other high-tech industries. The structures and frequencies of Dinaphtho[2,3-b:2’,3’-d]thiophene-5,7,12,13-tetraone (DNTTRA) and its 36 derivatives containing azobenzene were calculated by using density functional theory B3LYP and M06-2X methods at 6-311++g(d, p) level, respectively. Besides, the atomic charges of natural bond orbitals (NBO) were analyzed. The frontier orbitals and electron absorption spectra of A-G5 molecule were calculated by TD-DFT (TD-B3LYP/6-311++g(d, p) and TD-M06-2X/6-311++g(d, p)). The NLO properties were calculated by effective finite field FF method and self-compiled program. The results show that 36 molecules of these six series are D-π-A-π-D structures. The third-order NLO coefficients γ (second-order hyperpolarizability) of the D series molecules are the largest among the six series, reaching 10<sup>7</sup> atomic units (10<sup><span style="color:#4F4F4F;font-family:-apple-system, " font-size:14px;white-space:normal;background-color:#ffffff;"="">-</span>33</sup> esu) of order of magnitude, showing good third-order NLO properties. Last, the third-order NLO properties of the azobenzene ring can be improved by introducing strong electron donor groups (e.g. -N(CH<sub>3</sub>)<sub>2</sub> or -NHCH<sub>3</sub>) in the azobenzene ring, so that the third-order NLO materials with good performance can be obtained.展开更多
We investigate the structure and mechanical properties of proposed graphene-like hexagonal thallium nitride monolayer (g-TlN) using first-principles calculations based on density-functional theory. Compared to graphen...We investigate the structure and mechanical properties of proposed graphene-like hexagonal thallium nitride monolayer (g-TlN) using first-principles calculations based on density-functional theory. Compared to graphene-like hexagonal boron nitride monolayer (g-BN), g-TlN is much softer, with 12% in-plane stiffness, 25%, 22%, and 20% ultimate strengths in armchair, zigzag, and biaxial strains respectively. However, g-TlN has a larger Poisson’s ratio, 0.69, about 3.1 times that of g-BN. It was found that the g-TlN also sustains much smaller strains before rupture. We obtained the second, third, fourth, and fifth order elastic constants for a rigorous continuum description of the elastic response of g-TlN. The second order elastic constants, including in-plane stiffness, are predicted to monotonically increase with pressure while the Poisson’s ratio monotonically decreases with increasing pressure.展开更多
UML 2.X sequence diagrams(SD)are among privileged scenarios-based approaches dealing with the complexity of modeling the behaviors of some current systems.However,there are several issues related to the standard seman...UML 2.X sequence diagrams(SD)are among privileged scenarios-based approaches dealing with the complexity of modeling the behaviors of some current systems.However,there are several issues related to the standard semantics of UML 2.X SD proposed by the Object Management Group(OMG).They mainly concern ambiguities of the interpretation of SDs,and the computation of causal relations between events which is not specifically laid out.Moreover,SD is a semi-formal language,and it does not support the verification of the modeled system.This justifies the considerable number of research studies intending to define formal semantics of UML SDs.We proposed in our previous work semantics covering the most popular combined fragments(CF)of control-flow ALT,OPT,LOOP and SEQ,allowing to model alternative,optional,iterative and sequential behaviors respectively.The proposed semantics is based on partial order theory relations that permit the computation of the precedence relations between the events of an SD with nested CFs.We also addressed the issue of the evaluation of the interaction constraint(guard)for guarded CFs,and the related synchronization issue.In this paper,we first extend our semantics,proposed in our previous work;indeed,we propose new rules for the computation of causal relations for SD with PAR and STRICT CFs(dedicated to modeling concurrent and strict behaviors respectively)as well as their nesting.Then,we propose a transformational semantics in Event-B.Our modeling approach emphasizes computation of causal relations,guard handling and transformational semantics into Event-B.The transformation of UML 2.X SD into the formal method Event-B allows us to perform several kinds of verification including simulation,trace acceptance,verification of properties,and verification of refinement relation between SDs.展开更多
In this paper,a sensitivity matrix based approach is proposed to improve the minimum damping ratio.The proposed method also avoids burdensome deviation calculations of damping ratio of large-scale power grids when com...In this paper,a sensitivity matrix based approach is proposed to improve the minimum damping ratio.The proposed method also avoids burdensome deviation calculations of damping ratio of large-scale power grids when compared to the Small-Signal-Stability Constrained Optimal Power Flow(SSSC-OPF)approach.This is achieved using the Matrix Perturbation Theory(MPT)to deal with the 2nd order sensitivity matrices,and the establishment of an optimal corrective control model to regulate the output power of generating units to improve the minimum damping ratio of power grids.Finally,simulation results on the IEEE 9-bus,IEEE 39-bus and a China 634-bus systems show that the proposed approach can significantly reduce the burden of deviation calculation,while enhancing power system stability and ensuring calculation accuracy.展开更多
文摘Third-order nonlinear optical (NLO) materials have broad application prospects in high-density data storage, optical computer, modern laser technology, and other high-tech industries. The structures and frequencies of Dinaphtho[2,3-b:2’,3’-d]thiophene-5,7,12,13-tetraone (DNTTRA) and its 36 derivatives containing azobenzene were calculated by using density functional theory B3LYP and M06-2X methods at 6-311++g(d, p) level, respectively. Besides, the atomic charges of natural bond orbitals (NBO) were analyzed. The frontier orbitals and electron absorption spectra of A-G5 molecule were calculated by TD-DFT (TD-B3LYP/6-311++g(d, p) and TD-M06-2X/6-311++g(d, p)). The NLO properties were calculated by effective finite field FF method and self-compiled program. The results show that 36 molecules of these six series are D-π-A-π-D structures. The third-order NLO coefficients γ (second-order hyperpolarizability) of the D series molecules are the largest among the six series, reaching 10<sup>7</sup> atomic units (10<sup><span style="color:#4F4F4F;font-family:-apple-system, " font-size:14px;white-space:normal;background-color:#ffffff;"="">-</span>33</sup> esu) of order of magnitude, showing good third-order NLO properties. Last, the third-order NLO properties of the azobenzene ring can be improved by introducing strong electron donor groups (e.g. -N(CH<sub>3</sub>)<sub>2</sub> or -NHCH<sub>3</sub>) in the azobenzene ring, so that the third-order NLO materials with good performance can be obtained.
文摘We investigate the structure and mechanical properties of proposed graphene-like hexagonal thallium nitride monolayer (g-TlN) using first-principles calculations based on density-functional theory. Compared to graphene-like hexagonal boron nitride monolayer (g-BN), g-TlN is much softer, with 12% in-plane stiffness, 25%, 22%, and 20% ultimate strengths in armchair, zigzag, and biaxial strains respectively. However, g-TlN has a larger Poisson’s ratio, 0.69, about 3.1 times that of g-BN. It was found that the g-TlN also sustains much smaller strains before rupture. We obtained the second, third, fourth, and fifth order elastic constants for a rigorous continuum description of the elastic response of g-TlN. The second order elastic constants, including in-plane stiffness, are predicted to monotonically increase with pressure while the Poisson’s ratio monotonically decreases with increasing pressure.
文摘UML 2.X sequence diagrams(SD)are among privileged scenarios-based approaches dealing with the complexity of modeling the behaviors of some current systems.However,there are several issues related to the standard semantics of UML 2.X SD proposed by the Object Management Group(OMG).They mainly concern ambiguities of the interpretation of SDs,and the computation of causal relations between events which is not specifically laid out.Moreover,SD is a semi-formal language,and it does not support the verification of the modeled system.This justifies the considerable number of research studies intending to define formal semantics of UML SDs.We proposed in our previous work semantics covering the most popular combined fragments(CF)of control-flow ALT,OPT,LOOP and SEQ,allowing to model alternative,optional,iterative and sequential behaviors respectively.The proposed semantics is based on partial order theory relations that permit the computation of the precedence relations between the events of an SD with nested CFs.We also addressed the issue of the evaluation of the interaction constraint(guard)for guarded CFs,and the related synchronization issue.In this paper,we first extend our semantics,proposed in our previous work;indeed,we propose new rules for the computation of causal relations for SD with PAR and STRICT CFs(dedicated to modeling concurrent and strict behaviors respectively)as well as their nesting.Then,we propose a transformational semantics in Event-B.Our modeling approach emphasizes computation of causal relations,guard handling and transformational semantics into Event-B.The transformation of UML 2.X SD into the formal method Event-B allows us to perform several kinds of verification including simulation,trace acceptance,verification of properties,and verification of refinement relation between SDs.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51577085).
文摘In this paper,a sensitivity matrix based approach is proposed to improve the minimum damping ratio.The proposed method also avoids burdensome deviation calculations of damping ratio of large-scale power grids when compared to the Small-Signal-Stability Constrained Optimal Power Flow(SSSC-OPF)approach.This is achieved using the Matrix Perturbation Theory(MPT)to deal with the 2nd order sensitivity matrices,and the establishment of an optimal corrective control model to regulate the output power of generating units to improve the minimum damping ratio of power grids.Finally,simulation results on the IEEE 9-bus,IEEE 39-bus and a China 634-bus systems show that the proposed approach can significantly reduce the burden of deviation calculation,while enhancing power system stability and ensuring calculation accuracy.