Decontamination of 2-chloroethyl ethyl sulfide (2-CEES, CH_3CH_2SCH_2CH_2C1) by pulsed corona plasma was investigated. The results show that 212.6 mg/m^3 of 2-CEES, with the gas flow rate of 2 m^3/h, can be decontam...Decontamination of 2-chloroethyl ethyl sulfide (2-CEES, CH_3CH_2SCH_2CH_2C1) by pulsed corona plasma was investigated. The results show that 212.6 mg/m^3 of 2-CEES, with the gas flow rate of 2 m^3/h, can be decontaminated to 0.09 mg/m^3. According to the variation of the inlet and outlet concentration of 2-CEES vapor with retention time, it is found that the reaction of 2-CEES in a pulsed corona plasma system follows the first order reaction, with the reaction rate constant of 0.463 s^-1. The decontamination mechanism is discussed based on an analysis of the dissociation energy of chemical bonds and decontamination products. The C-S bond adjacent to the C1 atom will be destroyed firstly to form CH3CH2S. and .CH2CH2C1 radicals. CH3CH2S. can be decomposed to .C_2H_5 and .S..S can be oxidized to SO_2, while .C_2H_5 can be finally oxidized to CO_2 and H_2O. The C-Cl bond in the .CH_2CH_2C1 radical can be destroyed to form .CH_2CH_2. and .C1, which can be mineralized to CO_2, H_2O and HCl. The H atom in the .CH_2CH_2C1 radical can also be substituted by -C1 to form CHCl_2-CHCl_2.展开更多
基金supported by State Key Laboratory of NBC Protection for Civilian,China
文摘Decontamination of 2-chloroethyl ethyl sulfide (2-CEES, CH_3CH_2SCH_2CH_2C1) by pulsed corona plasma was investigated. The results show that 212.6 mg/m^3 of 2-CEES, with the gas flow rate of 2 m^3/h, can be decontaminated to 0.09 mg/m^3. According to the variation of the inlet and outlet concentration of 2-CEES vapor with retention time, it is found that the reaction of 2-CEES in a pulsed corona plasma system follows the first order reaction, with the reaction rate constant of 0.463 s^-1. The decontamination mechanism is discussed based on an analysis of the dissociation energy of chemical bonds and decontamination products. The C-S bond adjacent to the C1 atom will be destroyed firstly to form CH3CH2S. and .CH2CH2C1 radicals. CH3CH2S. can be decomposed to .C_2H_5 and .S..S can be oxidized to SO_2, while .C_2H_5 can be finally oxidized to CO_2 and H_2O. The C-Cl bond in the .CH_2CH_2C1 radical can be destroyed to form .CH_2CH_2. and .C1, which can be mineralized to CO_2, H_2O and HCl. The H atom in the .CH_2CH_2C1 radical can also be substituted by -C1 to form CHCl_2-CHCl_2.