Islet beta cells(β-cells)produce insulin in response to high blood glucose levels,which is essential for preserving glucose homeostasis.Voltage-gated ion channels inβ-cells,including Na+,K+,and Ca2+channels,aid in t...Islet beta cells(β-cells)produce insulin in response to high blood glucose levels,which is essential for preserving glucose homeostasis.Voltage-gated ion channels inβ-cells,including Na+,K+,and Ca2+channels,aid in the release of insulin.The epithelial sodium channel alpha subunit(α-ENaC),a voltage-independent sodium ion channel,is also expressed in human pancreatic endocrine cells.However,there is no reported study on the function of ENaC in theβ-cells.In the current study,we found thatα-ENaC was expressed in human pancreatic glandule and pancreatic isletβ-cells.In the pancreas of db/db mice and high-fat diet-induced mice,and in mouse isletβ-cells(MIN6 cells)treated with palmitate,α-ENaC expression was increased.Whenα-ENaC was overexpressed in MIN6 cells,insulin content and glucose-induced insulin secretion were significantly reduced.On the other hand,palmitate injured isletβ-cells and suppressed insulin synthesis and secretion,but increasedα-ENaC expression in MIN6 cells.However,α-ENaC knockout(Scnn1a−/−)in MIN6 cells attenuatedβ-cell disorder induced by palmitate.Furthermore,α-ENaC regulated the ubiquitylation and degradation of sirtuin 2 inβ-cells.α-ENaC also modulatedβ-cell function in correlation with the inositol-requiring enzyme 1 alpha/X-box binding protein 1(IRE1α/XBP1)and protein kinase RNA-like endoplasmic reticulum kinase/C/EBP homologous protein(PERK/CHOP)endoplasmic reticulum stress pathways.These results suggest thatα-ENaC may play a novel role in insulin synthesis and secretion in theβ-cells,and the upregulation ofα-ENaC promotes isletβ-cell dysfunction.In conclusion,α-ENaC may be a key regulator involved in isletβ-cell damage and a potential therapeutic target for type 2 diabetes mellitus.展开更多
Discovery of materials using“bottom-up”or“top-down”approach is of great interest in materials science.Layered materials consisting of two-dimensional(2D)building blocks provide a good platform to explore new mater...Discovery of materials using“bottom-up”or“top-down”approach is of great interest in materials science.Layered materials consisting of two-dimensional(2D)building blocks provide a good platform to explore new materials in this respect.In van der Waals(vdW)layered materials,these building blocks are charge neutral and can be isolated from their bulk phase(top-down),but usually grow on substrate.In ionic layered materials,they are charged and usually cannot exist independently but can serve as motifs to construct new materials(bottom-up).In this paper,we introduce our recently constructed databases for 2D material-substrate interface(2DMSI),and 2D charged building blocks.For 2DMSI database,we systematically build a workflow to predict appropriate substrates and their geometries at substrates,and construct the 2DMSI database.For the 2D charged building block database,1208 entries from bulk material database are identified.Information of crystal structure,valence state,source,dimension and so on is provided for each entry with a json format.We also show its application in designing and searching for new functional layered materials.The 2DMSI database,building block database,and designed layered materials are available in Science Data Bank at https://doi.org/10.57760/sciencedb.j00113.00188.展开更多
Objective: The aim of this study is to investigate how individuals with type 2 diabetes mellitus’ pancreatic β-cell function index and insulin resistance index are affected by tuberculosis infection. Methods: The st...Objective: The aim of this study is to investigate how individuals with type 2 diabetes mellitus’ pancreatic β-cell function index and insulin resistance index are affected by tuberculosis infection. Methods: The study group consisted of 89 patients with type 2 diabetes mellitus and tuberculosis infection who were admitted to Jingzhou Chest Hospital between March 2019 and March 2021. Gender and duration of diabetes were matching conditions. The control group was made up of 89 patients with type 2 diabetes who were admitted to Jingzhou Central Hospital’s endocrinology department during the same period. The two patient groups provided general information such as gender, age, length of diabetes, and blood biochemical indexes such as glycosylated hemoglobin (HbA1c), fasting glucose (FPG), and fasting C-peptide (FC-P). The HOMA calculator was used to calculate the HOMA-β and the HOMA-IR, and intergroup comparisons and correlation analyses were carried out. Results: Regarding gender, age, disease duration, FC-P, and HbA1c, the differences between the two groups were not statistically significant (P > 0.05). However, BMI, FPG, HOMA-β, and HOMA-IR showed statistically significant differences (P < 0.05). In comparison to the control group, the study group’s HOMA-β was lower and its HOMA-IR was greater. According to Spearman’s correlation analysis, HOMA-β had a negative association (P th FPG, HbA1c, and the length of the disease, and a positive correlation with BMI and FC-P. A positive correlation was found between HOMA-IR and BMI, FPG, and FC-P (P < 0.01), as well as a correlation with the length of the disease (P > 0.05) and HbA1c. Conclusions: In type 2 diabetes mellitus combined with tuberculosis infection, the patients had higher FPG levels and lower FC-P levels, the secretory function of pancreatic β-cells was more severely impaired, and insulin resistance was more obvious.展开更多
Insulin resistance and pancreaticβ-cell dysfunction are major pathological mechanisms implicated in the development and progression of type 2 diabetes(T2D).Beyond the detrimental effects of insulin resistance,inflamm...Insulin resistance and pancreaticβ-cell dysfunction are major pathological mechanisms implicated in the development and progression of type 2 diabetes(T2D).Beyond the detrimental effects of insulin resistance,inflammation and oxidative stress have emerged as critical features of T2D that defineβ-cell dysfunction.Predominant markers of inflammation such as C-reactive protein,tumor necrosis factor alpha,and interleukin-1βare consistently associated withβ-cell failure in preclinical models and in people with T2D.Similarly,important markers of oxidative stress,such as increased reactive oxygen species and depleted intracellular antioxidants,are consistent with pancreaticβ-cell damage in conditions of T2D.Such effects illustrate a pathological relationship between an abnormal inflammatory response and generation of oxidative stress during the progression of T2D.The current review explores preclinical and clinical research on the pathological implications of inflammation and oxidative stress during the development ofβ-cell dysfunction in T2D.Moreover,important molecular mechanisms and relevant biomarkers involved in this process are discussed to divulge a pathological link between inflammation and oxidative stress duringβ-cell failure in T2D.Underpinning the clinical relevance of the review,a systematic analysis of evidence from randomized controlled trials is covered,on the potential therapeutic effects of some commonly used antidiabetic agents in modulating inflammatory makers to improveβ-cell function.展开更多
Objective:While the reduction of transient receptor potential channel subfamily M member 5(TRPM5)has been reported in islet cells from type 2 diabetic(T2D)mouse models,its role in lipotoxicity-induced pancreaticβ-cel...Objective:While the reduction of transient receptor potential channel subfamily M member 5(TRPM5)has been reported in islet cells from type 2 diabetic(T2D)mouse models,its role in lipotoxicity-induced pancreaticβ-cell dysfunction remains unclear.This study aims to study its role.Methods:Pancreas slices were prepared from mice subjected to a high-fat-diet(HFD)at different time points,and TRPM5 expression in the pancreaticβcells was examined using immunofluorescence staining.Glucose-stimulated insulin secretion(GSIS)defects caused by lipotoxicity were mimicked by saturated fatty acid palmitate(Palm).Primary mouse islets and mouse insulinoma MIN6 cells were treated with Palm,and the TRPM5 expression was detected using qRT-PCR and Western blotting.Palm-induced GSIS defects were measured following siRNA-based Trpm5 knockdown.The detrimental effects of Palm on primary mouse islets were also assessed after overexpressing Trpm5 via an adenovirus-derived Trpm5(Ad-Trpm5).Results:HFD feeding decreased the mRNA levels and protein expression of TRPM5 in mouse pancreatic islets.Palm reduced TRPM5 protein expression in a time-and dose-dependent manner in MIN6 cells.Palm also inhibited TRPM5 expression in primary mouse islets.Knockdown of Trpm5 inhibited insulin secretion upon high glucose stimulation but had little effect on insulin biosynthesis.Overexpression of Trpm5 reversed Palm-induced GSIS defects and the production of functional maturation molecules unique toβcells.Conclusion:Our findings suggest that lipotoxicity inhibits TRPM5 expression in pancreaticβcells both in vivo and in vitro and,in turn,drivesβ-cell dysfunction.展开更多
This editorial summarizes the latest literature on the roles of neuronal PAS domain protein 2 and KN motif/ankyrin repeat domain 1 in type 2 diabetes(T2D).We highlight their involvement inβ-cell dysfunction,explore t...This editorial summarizes the latest literature on the roles of neuronal PAS domain protein 2 and KN motif/ankyrin repeat domain 1 in type 2 diabetes(T2D).We highlight their involvement inβ-cell dysfunction,explore their potential as therapeutic targets,and discuss the implications for new treatment strategies.We offer valuable insights into relevant gene regulation and cellular mechanisms relevant for the targeted management of T2D.展开更多
Currently,limited studies of immiscible water-alternating-CO_(2)(imWACO_(2))flooding focus on the impact of reservoir heterogeneity on reservoir development outcomes.Given this,using the heterogeneous reservoirs in th...Currently,limited studies of immiscible water-alternating-CO_(2)(imWACO_(2))flooding focus on the impact of reservoir heterogeneity on reservoir development outcomes.Given this,using the heterogeneous reservoirs in the Gao 89-1 block as a case study,this study conducted slab core flooding experiments and numerical simulations to assess the impact of reservoir heterogeneity on imWACO_(2)flooding efficiency.It can be concluded that imWACO_(2)flooding can enhance the sweep volume and oil recovery compared to continuous CO_(2)flooding.As the permeability difference increases,the difference in the swept volume between zones/layers with relatively high and low permeability increases.To optimize the exploitation of reservoirs in the Gao 89-1 block,the optimal timing and CO_(2)injection rate for imWACO_(2)flooding are determined at water cut of 40%and 10000 m^(3)/d,respectively.A short injection-production semi-period,combined with multiple cycles of water and CO_(2)injection alternations,is beneficial for enhanced oil recovery from imWACO_(2)flooding.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.81870467 and 82270717 to XL,and 81970673 to FC)China Postdoctoral Science Foundation(Grant No.2023M731630 to XZhang)Postgraduate Research and Practice Innovation Program of Jiangsu Province(Grant No.KYCX21_1588 to XZhou).
文摘Islet beta cells(β-cells)produce insulin in response to high blood glucose levels,which is essential for preserving glucose homeostasis.Voltage-gated ion channels inβ-cells,including Na+,K+,and Ca2+channels,aid in the release of insulin.The epithelial sodium channel alpha subunit(α-ENaC),a voltage-independent sodium ion channel,is also expressed in human pancreatic endocrine cells.However,there is no reported study on the function of ENaC in theβ-cells.In the current study,we found thatα-ENaC was expressed in human pancreatic glandule and pancreatic isletβ-cells.In the pancreas of db/db mice and high-fat diet-induced mice,and in mouse isletβ-cells(MIN6 cells)treated with palmitate,α-ENaC expression was increased.Whenα-ENaC was overexpressed in MIN6 cells,insulin content and glucose-induced insulin secretion were significantly reduced.On the other hand,palmitate injured isletβ-cells and suppressed insulin synthesis and secretion,but increasedα-ENaC expression in MIN6 cells.However,α-ENaC knockout(Scnn1a−/−)in MIN6 cells attenuatedβ-cell disorder induced by palmitate.Furthermore,α-ENaC regulated the ubiquitylation and degradation of sirtuin 2 inβ-cells.α-ENaC also modulatedβ-cell function in correlation with the inositol-requiring enzyme 1 alpha/X-box binding protein 1(IRE1α/XBP1)and protein kinase RNA-like endoplasmic reticulum kinase/C/EBP homologous protein(PERK/CHOP)endoplasmic reticulum stress pathways.These results suggest thatα-ENaC may play a novel role in insulin synthesis and secretion in theβ-cells,and the upregulation ofα-ENaC promotes isletβ-cell dysfunction.In conclusion,α-ENaC may be a key regulator involved in isletβ-cell damage and a potential therapeutic target for type 2 diabetes mellitus.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61888102,52272172,and 52102193)the Major Program of the National Natural Science Foundation of China(Grant No.92163206)+2 种基金the National Key Research and Development Program of China(Grant Nos.2021YFA1201501 and 2022YFA1204100)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB30000000)the Fundamental Research Funds for the Central Universities.
文摘Discovery of materials using“bottom-up”or“top-down”approach is of great interest in materials science.Layered materials consisting of two-dimensional(2D)building blocks provide a good platform to explore new materials in this respect.In van der Waals(vdW)layered materials,these building blocks are charge neutral and can be isolated from their bulk phase(top-down),but usually grow on substrate.In ionic layered materials,they are charged and usually cannot exist independently but can serve as motifs to construct new materials(bottom-up).In this paper,we introduce our recently constructed databases for 2D material-substrate interface(2DMSI),and 2D charged building blocks.For 2DMSI database,we systematically build a workflow to predict appropriate substrates and their geometries at substrates,and construct the 2DMSI database.For the 2D charged building block database,1208 entries from bulk material database are identified.Information of crystal structure,valence state,source,dimension and so on is provided for each entry with a json format.We also show its application in designing and searching for new functional layered materials.The 2DMSI database,building block database,and designed layered materials are available in Science Data Bank at https://doi.org/10.57760/sciencedb.j00113.00188.
文摘Objective: The aim of this study is to investigate how individuals with type 2 diabetes mellitus’ pancreatic β-cell function index and insulin resistance index are affected by tuberculosis infection. Methods: The study group consisted of 89 patients with type 2 diabetes mellitus and tuberculosis infection who were admitted to Jingzhou Chest Hospital between March 2019 and March 2021. Gender and duration of diabetes were matching conditions. The control group was made up of 89 patients with type 2 diabetes who were admitted to Jingzhou Central Hospital’s endocrinology department during the same period. The two patient groups provided general information such as gender, age, length of diabetes, and blood biochemical indexes such as glycosylated hemoglobin (HbA1c), fasting glucose (FPG), and fasting C-peptide (FC-P). The HOMA calculator was used to calculate the HOMA-β and the HOMA-IR, and intergroup comparisons and correlation analyses were carried out. Results: Regarding gender, age, disease duration, FC-P, and HbA1c, the differences between the two groups were not statistically significant (P > 0.05). However, BMI, FPG, HOMA-β, and HOMA-IR showed statistically significant differences (P < 0.05). In comparison to the control group, the study group’s HOMA-β was lower and its HOMA-IR was greater. According to Spearman’s correlation analysis, HOMA-β had a negative association (P th FPG, HbA1c, and the length of the disease, and a positive correlation with BMI and FC-P. A positive correlation was found between HOMA-IR and BMI, FPG, and FC-P (P < 0.01), as well as a correlation with the length of the disease (P > 0.05) and HbA1c. Conclusions: In type 2 diabetes mellitus combined with tuberculosis infection, the patients had higher FPG levels and lower FC-P levels, the secretory function of pancreatic β-cells was more severely impaired, and insulin resistance was more obvious.
基金Supported by the Biomedical Research and Innovation Platform,of the South African Medical Research Council (SAMRC)the National Research Foundation (grant No. 132534 and 141929)
文摘Insulin resistance and pancreaticβ-cell dysfunction are major pathological mechanisms implicated in the development and progression of type 2 diabetes(T2D).Beyond the detrimental effects of insulin resistance,inflammation and oxidative stress have emerged as critical features of T2D that defineβ-cell dysfunction.Predominant markers of inflammation such as C-reactive protein,tumor necrosis factor alpha,and interleukin-1βare consistently associated withβ-cell failure in preclinical models and in people with T2D.Similarly,important markers of oxidative stress,such as increased reactive oxygen species and depleted intracellular antioxidants,are consistent with pancreaticβ-cell damage in conditions of T2D.Such effects illustrate a pathological relationship between an abnormal inflammatory response and generation of oxidative stress during the progression of T2D.The current review explores preclinical and clinical research on the pathological implications of inflammation and oxidative stress during the development ofβ-cell dysfunction in T2D.Moreover,important molecular mechanisms and relevant biomarkers involved in this process are discussed to divulge a pathological link between inflammation and oxidative stress duringβ-cell failure in T2D.Underpinning the clinical relevance of the review,a systematic analysis of evidence from randomized controlled trials is covered,on the potential therapeutic effects of some commonly used antidiabetic agents in modulating inflammatory makers to improveβ-cell function.
基金supported by grants from the National Natural Science Foundation of China(No.81830024,No.82270844 and No.82070843).
文摘Objective:While the reduction of transient receptor potential channel subfamily M member 5(TRPM5)has been reported in islet cells from type 2 diabetic(T2D)mouse models,its role in lipotoxicity-induced pancreaticβ-cell dysfunction remains unclear.This study aims to study its role.Methods:Pancreas slices were prepared from mice subjected to a high-fat-diet(HFD)at different time points,and TRPM5 expression in the pancreaticβcells was examined using immunofluorescence staining.Glucose-stimulated insulin secretion(GSIS)defects caused by lipotoxicity were mimicked by saturated fatty acid palmitate(Palm).Primary mouse islets and mouse insulinoma MIN6 cells were treated with Palm,and the TRPM5 expression was detected using qRT-PCR and Western blotting.Palm-induced GSIS defects were measured following siRNA-based Trpm5 knockdown.The detrimental effects of Palm on primary mouse islets were also assessed after overexpressing Trpm5 via an adenovirus-derived Trpm5(Ad-Trpm5).Results:HFD feeding decreased the mRNA levels and protein expression of TRPM5 in mouse pancreatic islets.Palm reduced TRPM5 protein expression in a time-and dose-dependent manner in MIN6 cells.Palm also inhibited TRPM5 expression in primary mouse islets.Knockdown of Trpm5 inhibited insulin secretion upon high glucose stimulation but had little effect on insulin biosynthesis.Overexpression of Trpm5 reversed Palm-induced GSIS defects and the production of functional maturation molecules unique toβcells.Conclusion:Our findings suggest that lipotoxicity inhibits TRPM5 expression in pancreaticβcells both in vivo and in vitro and,in turn,drivesβ-cell dysfunction.
文摘This editorial summarizes the latest literature on the roles of neuronal PAS domain protein 2 and KN motif/ankyrin repeat domain 1 in type 2 diabetes(T2D).We highlight their involvement inβ-cell dysfunction,explore their potential as therapeutic targets,and discuss the implications for new treatment strategies.We offer valuable insights into relevant gene regulation and cellular mechanisms relevant for the targeted management of T2D.
基金funded by the National Natural Science Foundation of China(No.51974343)the Open Fund of Hubei Key Laboratory of Drilling and Production Engineering for Oil and Gas(Yangtze University)(No.YQZC202307)+2 种基金the Qingdao Postdoctoral Applied Research Project(No.qdyy20200084)the China Postdoctoral Science Foundation(No.2021M703588)a project of Science&Technology R&D Department of SINOPEC entitled Key Technology for Optimization Design of 3D Development of Shale oil in Dongying Sag(No.P23026).
文摘Currently,limited studies of immiscible water-alternating-CO_(2)(imWACO_(2))flooding focus on the impact of reservoir heterogeneity on reservoir development outcomes.Given this,using the heterogeneous reservoirs in the Gao 89-1 block as a case study,this study conducted slab core flooding experiments and numerical simulations to assess the impact of reservoir heterogeneity on imWACO_(2)flooding efficiency.It can be concluded that imWACO_(2)flooding can enhance the sweep volume and oil recovery compared to continuous CO_(2)flooding.As the permeability difference increases,the difference in the swept volume between zones/layers with relatively high and low permeability increases.To optimize the exploitation of reservoirs in the Gao 89-1 block,the optimal timing and CO_(2)injection rate for imWACO_(2)flooding are determined at water cut of 40%and 10000 m^(3)/d,respectively.A short injection-production semi-period,combined with multiple cycles of water and CO_(2)injection alternations,is beneficial for enhanced oil recovery from imWACO_(2)flooding.