The authors introduce nonseparable scaling function interpolation and show that its approximation can provide similar convergence properties as scalar wavelet system. Several equivalent statements of accuracy of nonse...The authors introduce nonseparable scaling function interpolation and show that its approximation can provide similar convergence properties as scalar wavelet system. Several equivalent statements of accuracy of nonseparable scaling function are also given. In the numerical experiments, it appears that nonseparable scaling function interpolation has better convergence results than scalar wavelet systems in some cases.展开更多
A normalized two-dimensional band-limited Weierstrass fractal function is used for modelling the dielectric rough surface. An analytic solution of the scattered field is derived based on the Kirchhoff approximation. T...A normalized two-dimensional band-limited Weierstrass fractal function is used for modelling the dielectric rough surface. An analytic solution of the scattered field is derived based on the Kirchhoff approximation. The variance of scattering intensity is presented to study the fractal characteristics through theoretical analysis and numerical calculations. The important conclusion is obtained that the diffracted envelope slopes of scattering pattern can be approximated as a slope of linear equation. This conclusion will be applicable for solving the inverse problem of reconstructing rough surface and remote sensing.展开更多
Third-order nonlinear optical (NLO) materials have broad application prospects in high-density data storage, optical computer, modern laser technology, and other high-tech industries. The structures and frequencies of...Third-order nonlinear optical (NLO) materials have broad application prospects in high-density data storage, optical computer, modern laser technology, and other high-tech industries. The structures and frequencies of Dinaphtho[2,3-b:2’,3’-d]thiophene-5,7,12,13-tetraone (DNTTRA) and its 36 derivatives containing azobenzene were calculated by using density functional theory B3LYP and M06-2X methods at 6-311++g(d, p) level, respectively. Besides, the atomic charges of natural bond orbitals (NBO) were analyzed. The frontier orbitals and electron absorption spectra of A-G5 molecule were calculated by TD-DFT (TD-B3LYP/6-311++g(d, p) and TD-M06-2X/6-311++g(d, p)). The NLO properties were calculated by effective finite field FF method and self-compiled program. The results show that 36 molecules of these six series are D-π-A-π-D structures. The third-order NLO coefficients γ (second-order hyperpolarizability) of the D series molecules are the largest among the six series, reaching 10<sup>7</sup> atomic units (10<sup><span style="color:#4F4F4F;font-family:-apple-system, " font-size:14px;white-space:normal;background-color:#ffffff;"="">-</span>33</sup> esu) of order of magnitude, showing good third-order NLO properties. Last, the third-order NLO properties of the azobenzene ring can be improved by introducing strong electron donor groups (e.g. -N(CH<sub>3</sub>)<sub>2</sub> or -NHCH<sub>3</sub>) in the azobenzene ring, so that the third-order NLO materials with good performance can be obtained.展开更多
An extended subequation rational expansion method is presented and used to construct some exact,analyt-ical solutions of the (2+1)-dimensional cubic nonlinear Schrdinger equation.From our results,many known solutionso...An extended subequation rational expansion method is presented and used to construct some exact,analyt-ical solutions of the (2+1)-dimensional cubic nonlinear Schrdinger equation.From our results,many known solutionsof the (2+1)-dimensional cubic nonlinear Schrdinger equation can be recovered by means of some suitable selections ofthe arbitrary functions and arbitrary constants.With computer simulation,the properties of new non-travelling waveand coefficient function's soliton-like solutions,and elliptic solutions are demonstrated by some plots.展开更多
A novel method on designing bispectral windows is proposed in this letter. Compound functions based on a function with binary quadric form, starting from the symmetry characteristic of three-order moments are used as ...A novel method on designing bispectral windows is proposed in this letter. Compound functions based on a function with binary quadric form, starting from the symmetry characteristic of three-order moments are used as the 2-D windowfunctions. Two approaches on how to find the expressions of the compound functions are discussed in detail. One is to approximate the compound function after being Taylor expanded under the Minimum Mean Square Error (MMSE) criteria. Another is to compound the hyperbolic secant function and the binary quadric function directly. According to theoretical analysis, the first type new windows have been proved as slightly better than the conventional ones, the second type new windows are much better than the conventional ones, and the bispectral estimation mean square error approximates to 0.展开更多
One important application of independent component analysis (ICA) is in image processing. A two dimensional (2-D) composite ICA algorithm framework for 2-D image independent component analysis (2-D ICA) is propo...One important application of independent component analysis (ICA) is in image processing. A two dimensional (2-D) composite ICA algorithm framework for 2-D image independent component analysis (2-D ICA) is proposed. The 2-D nature of the algorithm provides it an advantage of circumventing the roundabout transforming procedures between two dimensional (2-D) image deta and one-dimensional (l-D) signal. Moreover the combination of the Newton (fixed-point algorithm) and natural gradient algorithms in this composite algorithm increases its efficiency and robustness. The convincing results of a successful example in functional magnetic resonance imaging (fMRI) show the potential application of composite 2-D ICA in the brain activity detection.展开更多
文摘The authors introduce nonseparable scaling function interpolation and show that its approximation can provide similar convergence properties as scalar wavelet system. Several equivalent statements of accuracy of nonseparable scaling function are also given. In the numerical experiments, it appears that nonseparable scaling function interpolation has better convergence results than scalar wavelet systems in some cases.
基金supported by the National Natural Science Foundation of China (Grant No 60571058)Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No 20070701010)
文摘A normalized two-dimensional band-limited Weierstrass fractal function is used for modelling the dielectric rough surface. An analytic solution of the scattered field is derived based on the Kirchhoff approximation. The variance of scattering intensity is presented to study the fractal characteristics through theoretical analysis and numerical calculations. The important conclusion is obtained that the diffracted envelope slopes of scattering pattern can be approximated as a slope of linear equation. This conclusion will be applicable for solving the inverse problem of reconstructing rough surface and remote sensing.
文摘Third-order nonlinear optical (NLO) materials have broad application prospects in high-density data storage, optical computer, modern laser technology, and other high-tech industries. The structures and frequencies of Dinaphtho[2,3-b:2’,3’-d]thiophene-5,7,12,13-tetraone (DNTTRA) and its 36 derivatives containing azobenzene were calculated by using density functional theory B3LYP and M06-2X methods at 6-311++g(d, p) level, respectively. Besides, the atomic charges of natural bond orbitals (NBO) were analyzed. The frontier orbitals and electron absorption spectra of A-G5 molecule were calculated by TD-DFT (TD-B3LYP/6-311++g(d, p) and TD-M06-2X/6-311++g(d, p)). The NLO properties were calculated by effective finite field FF method and self-compiled program. The results show that 36 molecules of these six series are D-π-A-π-D structures. The third-order NLO coefficients γ (second-order hyperpolarizability) of the D series molecules are the largest among the six series, reaching 10<sup>7</sup> atomic units (10<sup><span style="color:#4F4F4F;font-family:-apple-system, " font-size:14px;white-space:normal;background-color:#ffffff;"="">-</span>33</sup> esu) of order of magnitude, showing good third-order NLO properties. Last, the third-order NLO properties of the azobenzene ring can be improved by introducing strong electron donor groups (e.g. -N(CH<sub>3</sub>)<sub>2</sub> or -NHCH<sub>3</sub>) in the azobenzene ring, so that the third-order NLO materials with good performance can be obtained.
基金The project supported by Natural Science Foundation of Zhejiang Province of China under Grant Nos.Y604056 and 605408the Doctoral Foundation of Ningbo City under Grant No.2005A61030Ningbo Natural Science Foundation under Grant No.2007A610049
文摘An extended subequation rational expansion method is presented and used to construct some exact,analyt-ical solutions of the (2+1)-dimensional cubic nonlinear Schrdinger equation.From our results,many known solutionsof the (2+1)-dimensional cubic nonlinear Schrdinger equation can be recovered by means of some suitable selections ofthe arbitrary functions and arbitrary constants.With computer simulation,the properties of new non-travelling waveand coefficient function's soliton-like solutions,and elliptic solutions are demonstrated by some plots.
文摘A novel method on designing bispectral windows is proposed in this letter. Compound functions based on a function with binary quadric form, starting from the symmetry characteristic of three-order moments are used as the 2-D windowfunctions. Two approaches on how to find the expressions of the compound functions are discussed in detail. One is to approximate the compound function after being Taylor expanded under the Minimum Mean Square Error (MMSE) criteria. Another is to compound the hyperbolic secant function and the binary quadric function directly. According to theoretical analysis, the first type new windows have been proved as slightly better than the conventional ones, the second type new windows are much better than the conventional ones, and the bispectral estimation mean square error approximates to 0.
基金Supported by the 973 Project (No.2003CB716106), NSFC (No.90208003, 30200059), TRAPOYT, Doctor Training Fund of MOE, PRC, Key Research Project of Science and Technology of MOE, Fok Ying Tong Education Foundation (No.91041)
文摘One important application of independent component analysis (ICA) is in image processing. A two dimensional (2-D) composite ICA algorithm framework for 2-D image independent component analysis (2-D ICA) is proposed. The 2-D nature of the algorithm provides it an advantage of circumventing the roundabout transforming procedures between two dimensional (2-D) image deta and one-dimensional (l-D) signal. Moreover the combination of the Newton (fixed-point algorithm) and natural gradient algorithms in this composite algorithm increases its efficiency and robustness. The convincing results of a successful example in functional magnetic resonance imaging (fMRI) show the potential application of composite 2-D ICA in the brain activity detection.