An engineering system approach of 2-D cylindrical model of transient mass balance calculations of ozone and other concerned chemicals along with fourteen photolysis, ozone-generating and ozone-depleting chemical react...An engineering system approach of 2-D cylindrical model of transient mass balance calculations of ozone and other concerned chemicals along with fourteen photolysis, ozone-generating and ozone-depleting chemical reaction equations was developed, validated, and used for studying the ozone concentrations, distribution and peak of the layer, ozone depletion and total ozone abundance in the stratosphere. The calculated ozone concentrations and profile at both the Equator and a 60˚N location were found to follow closely with the measured data. The calculated average ozone concentration was within 1% of the measured average, and the deviation of ozone profiles was within 14%. The monthly evolution of stratospheric ozone concentrations and distribution above the Equator was studied with results discussed in details. The influences of slow air movement in both altitudinal and radial directions on ozone concentrations and profile in the stratosphere were explored and discussed. Parametric studies of the influences of gas diffusivities of ozone D<sub>O3</sub> and active atomic oxygen D<sub>O</sub> on ozone concentrations and distributions were also studied and delineated. Having both influences through physical diffusion and chemical reactions, the diffusivity (and diffusion) of atomic oxygen D<sub>O</sub> was found to be more sensitive and important than that of ozone D<sub>O3</sub> on ozone concentrations and distribution. The 2-D ozone model present in this paper for stratospheric ozone and its layer and depletion is shown to be robust, convenient, efficient, and executable for analyzing the complex ozone phenomena in the stratosphere. .展开更多
Two-dimensional three-temperature(2-D 3-T)radiation diffusion equa-tions are widely used to approximately describe the evolution of radiation energy within a multimaterial system and explain the exchange of energy amo...Two-dimensional three-temperature(2-D 3-T)radiation diffusion equa-tions are widely used to approximately describe the evolution of radiation energy within a multimaterial system and explain the exchange of energy among electrons,ions and photons.In this paper,we suggest a new positivity-preserving finite volume scheme for 2-D 3-T radiation diffusion equations on general polygonal meshes.The vertex unknowns are treated as primary ones for which the finite volume equations are constructed.The edgemidpoint and cell-centered unknowns are used as auxiliary ones and interpolated by the primary unknowns,which makes the final scheme a pure vertex-centered one.By comparison,most existing positivity-preserving finite volume schemes are cell-centered and based on the convex decomposition of the co-normal.Here,the conormal decomposition is not convex in general,leading to a fixed stencil of the flux approximation and avoiding a certain search algo-rithm on complex grids.Moreover,the new scheme effectively alleviates the nu-merical heat-barrier issue suffered by most existing cell-centered or hybrid schemes in solving strongly nonlinear radiation diffusion equations.Numerical experiments demonstrate the second-order accuracy and the positivity of the solution on various distorted grids.For the problem without analytic solution,the contours of the nu-merical solutions obtained by our scheme on distorted meshes accord with those on smooth quadrilateral meshes.展开更多
The lung is an important organ that takes part in the gas exchange process. In the study of gas transport and exchange in the human respiratory system, the complicated process of advection and diffusion (AD) in airway...The lung is an important organ that takes part in the gas exchange process. In the study of gas transport and exchange in the human respiratory system, the complicated process of advection and diffusion (AD) in airways of human lungs is considered. The basis of a lumped parameter model or a transport equation is modeled during the inspiration process, when oxygen enters into the human lung channel. The quantitative measurements of oxygen are detached and the model equation is solved numerically by explicit finite difference schemes. Numerical simulations were made for natural breathing conditions or normal breathing conditions. The respiratory flow results for the resting conditions are found strongly dependent on the AD effect with some contribution of the unsteadiness effect. The contour of the flow rate region is labeled and AD effects are compared with the variation of small intervals of time for a constant velocity when breathing is interrupted for a negligible moment.展开更多
文摘An engineering system approach of 2-D cylindrical model of transient mass balance calculations of ozone and other concerned chemicals along with fourteen photolysis, ozone-generating and ozone-depleting chemical reaction equations was developed, validated, and used for studying the ozone concentrations, distribution and peak of the layer, ozone depletion and total ozone abundance in the stratosphere. The calculated ozone concentrations and profile at both the Equator and a 60˚N location were found to follow closely with the measured data. The calculated average ozone concentration was within 1% of the measured average, and the deviation of ozone profiles was within 14%. The monthly evolution of stratospheric ozone concentrations and distribution above the Equator was studied with results discussed in details. The influences of slow air movement in both altitudinal and radial directions on ozone concentrations and profile in the stratosphere were explored and discussed. Parametric studies of the influences of gas diffusivities of ozone D<sub>O3</sub> and active atomic oxygen D<sub>O</sub> on ozone concentrations and distributions were also studied and delineated. Having both influences through physical diffusion and chemical reactions, the diffusivity (and diffusion) of atomic oxygen D<sub>O</sub> was found to be more sensitive and important than that of ozone D<sub>O3</sub> on ozone concentrations and distribution. The 2-D ozone model present in this paper for stratospheric ozone and its layer and depletion is shown to be robust, convenient, efficient, and executable for analyzing the complex ozone phenomena in the stratosphere. .
基金This work was partially supported by the National Natural Science Foundation of China(No.11871009)Postdoctoral Research Foundation of China(No.BX20190013).
文摘Two-dimensional three-temperature(2-D 3-T)radiation diffusion equa-tions are widely used to approximately describe the evolution of radiation energy within a multimaterial system and explain the exchange of energy among electrons,ions and photons.In this paper,we suggest a new positivity-preserving finite volume scheme for 2-D 3-T radiation diffusion equations on general polygonal meshes.The vertex unknowns are treated as primary ones for which the finite volume equations are constructed.The edgemidpoint and cell-centered unknowns are used as auxiliary ones and interpolated by the primary unknowns,which makes the final scheme a pure vertex-centered one.By comparison,most existing positivity-preserving finite volume schemes are cell-centered and based on the convex decomposition of the co-normal.Here,the conormal decomposition is not convex in general,leading to a fixed stencil of the flux approximation and avoiding a certain search algo-rithm on complex grids.Moreover,the new scheme effectively alleviates the nu-merical heat-barrier issue suffered by most existing cell-centered or hybrid schemes in solving strongly nonlinear radiation diffusion equations.Numerical experiments demonstrate the second-order accuracy and the positivity of the solution on various distorted grids.For the problem without analytic solution,the contours of the nu-merical solutions obtained by our scheme on distorted meshes accord with those on smooth quadrilateral meshes.
文摘The lung is an important organ that takes part in the gas exchange process. In the study of gas transport and exchange in the human respiratory system, the complicated process of advection and diffusion (AD) in airways of human lungs is considered. The basis of a lumped parameter model or a transport equation is modeled during the inspiration process, when oxygen enters into the human lung channel. The quantitative measurements of oxygen are detached and the model equation is solved numerically by explicit finite difference schemes. Numerical simulations were made for natural breathing conditions or normal breathing conditions. The respiratory flow results for the resting conditions are found strongly dependent on the AD effect with some contribution of the unsteadiness effect. The contour of the flow rate region is labeled and AD effects are compared with the variation of small intervals of time for a constant velocity when breathing is interrupted for a negligible moment.