Based on the fact that the variation of tile direction of arrival (DOA) isslower than that of the channel fading, the steering vector of the desired signal is estimatedfirstly using a subspace decomposition method and...Based on the fact that the variation of tile direction of arrival (DOA) isslower than that of the channel fading, the steering vector of the desired signal is estimatedfirstly using a subspace decomposition method and then a constrained condition is configured.Traffic signals are further employed to estimate the channel vector based on the constrained leastsquares criterion. We use the iterative least squares with projection (ILSP) algorithm initializedby the pilot to get the estimation. The accuracy of channel estimation and symbol detection can beprogressively increased through the iteration procedure of the ILSP algorithm. Simulation resultsdemonstrate that the proposed algorithm improves the system performance effectively compared withthe conventional 2-D RAKE receiver.展开更多
2-D RAKE receiver is an efficient way to realize the space-time processing for CDMA systems with aperiodic spreading codes. The Direction Of Arrival (DOA) and the relative time delay of every user's multipath must...2-D RAKE receiver is an efficient way to realize the space-time processing for CDMA systems with aperiodic spreading codes. The Direction Of Arrival (DOA) and the relative time delay of every user's multipath must be known to realize the 2-D RAKE receiver. In the third generation CDMA mobile communication system, auxiliary pilot channel is used in the uplink channels The different user's Vector Channel Impulse Response (VCIR) can be estimated from the pilotichannel easily. The VCIR contains spatial and temporal information. In this paper,by utilizing the known pulse shape function, a parameter matrix method used to estimate the Spatial Signature Vector (SSV) and the relative time delay is proposed in frequency domain.The DOA can be estimated from the SSV. By reconstructing the SSV and utilizing approximate Capon space filter, the performance of the 2-D RAKE receiver with uniform circular array can be improved with a little additional computation work.展开更多
A coupled one-dimensional (1-D) and two-dimensional (2-D) channel network mathematical model is proposed for flow calculations at nodes in a channel network system in this article. For the 1-D model, the finite di...A coupled one-dimensional (1-D) and two-dimensional (2-D) channel network mathematical model is proposed for flow calculations at nodes in a channel network system in this article. For the 1-D model, the finite difference method is used to discretize the Saint-Venant equations in all channels of a looped network. The Alternating Direction Implicit (ADI) method is adopted for the 2-D model at the nodes. In the coupled model, the 1-D model provides a good approximation with small computational effort, while the 2-D model is applied for complex topography to achieve a high accuracy. An Artificial Neural Network (ANN.) method is used for the data exchange and the connectivity between the 1-D and 2-D models. The coupled model is applied to the Jingjiang-Dongting Lake region, to simulate the tremendous looped channel network system, and the results are compared with field data. The good agreement shows that the coupled hydraulic model is more effective than the conventional 1-D model.展开更多
基金The National Hi-Tech Development Plan (863-317-03-01-02-04-20).
文摘Based on the fact that the variation of tile direction of arrival (DOA) isslower than that of the channel fading, the steering vector of the desired signal is estimatedfirstly using a subspace decomposition method and then a constrained condition is configured.Traffic signals are further employed to estimate the channel vector based on the constrained leastsquares criterion. We use the iterative least squares with projection (ILSP) algorithm initializedby the pilot to get the estimation. The accuracy of channel estimation and symbol detection can beprogressively increased through the iteration procedure of the ILSP algorithm. Simulation resultsdemonstrate that the proposed algorithm improves the system performance effectively compared withthe conventional 2-D RAKE receiver.
基金Supported in part by the National Nature Sciences, Doctor Education and HuaWei Corporation Foundation
文摘2-D RAKE receiver is an efficient way to realize the space-time processing for CDMA systems with aperiodic spreading codes. The Direction Of Arrival (DOA) and the relative time delay of every user's multipath must be known to realize the 2-D RAKE receiver. In the third generation CDMA mobile communication system, auxiliary pilot channel is used in the uplink channels The different user's Vector Channel Impulse Response (VCIR) can be estimated from the pilotichannel easily. The VCIR contains spatial and temporal information. In this paper,by utilizing the known pulse shape function, a parameter matrix method used to estimate the Spatial Signature Vector (SSV) and the relative time delay is proposed in frequency domain.The DOA can be estimated from the SSV. By reconstructing the SSV and utilizing approximate Capon space filter, the performance of the 2-D RAKE receiver with uniform circular array can be improved with a little additional computation work.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10872110,10902061)
文摘A coupled one-dimensional (1-D) and two-dimensional (2-D) channel network mathematical model is proposed for flow calculations at nodes in a channel network system in this article. For the 1-D model, the finite difference method is used to discretize the Saint-Venant equations in all channels of a looped network. The Alternating Direction Implicit (ADI) method is adopted for the 2-D model at the nodes. In the coupled model, the 1-D model provides a good approximation with small computational effort, while the 2-D model is applied for complex topography to achieve a high accuracy. An Artificial Neural Network (ANN.) method is used for the data exchange and the connectivity between the 1-D and 2-D models. The coupled model is applied to the Jingjiang-Dongting Lake region, to simulate the tremendous looped channel network system, and the results are compared with field data. The good agreement shows that the coupled hydraulic model is more effective than the conventional 1-D model.