Eddy-current (EC) testing is an effective electromagnetic non-destructive testing (NDT) technique.Planar eddy-current sensor arrays have several advantages such as good coherence,fast response speed,and high sensitivi...Eddy-current (EC) testing is an effective electromagnetic non-destructive testing (NDT) technique.Planar eddy-current sensor arrays have several advantages such as good coherence,fast response speed,and high sensitivity,which can be used for micro-damage inspection of crucial parts in mechanical equipments and aerospace aviation.The main purpose of this research is to detect the defect in a metallic material surface and identify the length of a crack using planar eddy-current sensor arrays in different directions.The principle and characteristics of planar eddy-current sensor arrays are introduced,and a crack length quantification algorithm in different directions is investigated.A damage quantitative detection system is established based on a field programmable gate array and ARM processor.The system is utilized to inspect the micro defect in a metallic material,which is carved to micro crack with size of 7mm(length)×0.1mm(width)×1mm(depth).The experimental data show that the sensor arrays can be used for the length measurement repeatedly,and that the uncertainty of the length measurement is below ±0.2mm.展开更多
A new oxazole compound, 1,4 bis(naphtho[1,2 d][1,3]oxazol 2 yl)benzene(BNOB) was synthesized and incorporated into a thin plasticized polymeric membrane for sensing Amrinon. The sensor exhibits a linear response t...A new oxazole compound, 1,4 bis(naphtho[1,2 d][1,3]oxazol 2 yl)benzene(BNOB) was synthesized and incorporated into a thin plasticized polymeric membrane for sensing Amrinon. The sensor exhibits a linear response to Amrinon in the range of 7 98×10 -7 —1 52×10 -4 mol/L at pH 3 28—4 04. The response mainly originates from the Primary Inner Filter Effect, which causes a decrease in the fluorescence intensity of the sensor membrane. The distinct advantages of the proposed sensor are of full reversibility, high sensitivity and selectivity as well as short response time(<1 min), indicating that the sensor can be used to monitor Amrinon in serum samples.展开更多
Several 2-D displacement sensing methods are reviewed. As to the crossdiffraction grating, there is no absolute zero-reference. In regards to the optical fiber method,the output signal is affected greatly by the quali...Several 2-D displacement sensing methods are reviewed. As to the crossdiffraction grating, there is no absolute zero-reference. In regards to the optical fiber method,the output signal is affected greatly by the quality of the reflecting surface and it is hard to gethigh resolution. Considering the concentric-circle gratings, the displacement can only be gainedwith complicated calculating of the experiment data. Compared with the advantages and limitations ofthe methods above, a novel 2-D zero-reference mark is especially proposed and demonstrated. Thiskind of mark has an absolute zero-reference when used in pair, and the experimental result is simpleto dispose. By superimposing a pair of specially coded 2-D marks, the correct alignment position ofthe two marks can be detected by the maximum output of the sharp intensity peak. And each slope ofthe peak is of good linearity which can be used to achieve high resolution in positioning andalignment in two dimensions. Design and fabrication of such 2-D zero-reference marks are introducedin detail. The experiment results are agreed with the theoretical ones.展开更多
A novel 2-D cosmic ray position detector has been built and studied. It is integrated from a CsI(Na) crystal pixel array, an optical fiber array, an image intensifier and an ICCD camera. The 2-D positions of one cos...A novel 2-D cosmic ray position detector has been built and studied. It is integrated from a CsI(Na) crystal pixel array, an optical fiber array, an image intensifier and an ICCD camera. The 2-D positions of one cosmic ray track is determined by the location of a fired CsI(Na) pixel. The scintillation light of these 1.0× 1.0 mm CsI(Na) pixels is delivered to the image intensifier through fibers. The light information is recorded in the ICCD camera in the form of images, from which the 2-D positions can be reconstructed. The background noise and cosmic ray images have been studied. The study shows that the cosmic ray detection efficiency can reach up to 11.4%, while the false accept rate is less than 1%.展开更多
基金supported by the National Natural Science Foundation of China (No.61171460)
文摘Eddy-current (EC) testing is an effective electromagnetic non-destructive testing (NDT) technique.Planar eddy-current sensor arrays have several advantages such as good coherence,fast response speed,and high sensitivity,which can be used for micro-damage inspection of crucial parts in mechanical equipments and aerospace aviation.The main purpose of this research is to detect the defect in a metallic material surface and identify the length of a crack using planar eddy-current sensor arrays in different directions.The principle and characteristics of planar eddy-current sensor arrays are introduced,and a crack length quantification algorithm in different directions is investigated.A damage quantitative detection system is established based on a field programmable gate array and ARM processor.The system is utilized to inspect the micro defect in a metallic material,which is carved to micro crack with size of 7mm(length)×0.1mm(width)×1mm(depth).The experimental data show that the sensor arrays can be used for the length measurement repeatedly,and that the uncertainty of the length measurement is below ±0.2mm.
文摘A new oxazole compound, 1,4 bis(naphtho[1,2 d][1,3]oxazol 2 yl)benzene(BNOB) was synthesized and incorporated into a thin plasticized polymeric membrane for sensing Amrinon. The sensor exhibits a linear response to Amrinon in the range of 7 98×10 -7 —1 52×10 -4 mol/L at pH 3 28—4 04. The response mainly originates from the Primary Inner Filter Effect, which causes a decrease in the fluorescence intensity of the sensor membrane. The distinct advantages of the proposed sensor are of full reversibility, high sensitivity and selectivity as well as short response time(<1 min), indicating that the sensor can be used to monitor Amrinon in serum samples.
基金This project is supported by National Natural Science Foundation of China(No.50335050, No.50275140)Specialized Research Foundation for Doctoral Program of Higher Education (SRFDP) of China(No. 20030358020).
文摘Several 2-D displacement sensing methods are reviewed. As to the crossdiffraction grating, there is no absolute zero-reference. In regards to the optical fiber method,the output signal is affected greatly by the quality of the reflecting surface and it is hard to gethigh resolution. Considering the concentric-circle gratings, the displacement can only be gainedwith complicated calculating of the experiment data. Compared with the advantages and limitations ofthe methods above, a novel 2-D zero-reference mark is especially proposed and demonstrated. Thiskind of mark has an absolute zero-reference when used in pair, and the experimental result is simpleto dispose. By superimposing a pair of specially coded 2-D marks, the correct alignment position ofthe two marks can be detected by the maximum output of the sharp intensity peak. And each slope ofthe peak is of good linearity which can be used to achieve high resolution in positioning andalignment in two dimensions. Design and fabrication of such 2-D zero-reference marks are introducedin detail. The experiment results are agreed with the theoretical ones.
文摘A novel 2-D cosmic ray position detector has been built and studied. It is integrated from a CsI(Na) crystal pixel array, an optical fiber array, an image intensifier and an ICCD camera. The 2-D positions of one cosmic ray track is determined by the location of a fired CsI(Na) pixel. The scintillation light of these 1.0× 1.0 mm CsI(Na) pixels is delivered to the image intensifier through fibers. The light information is recorded in the ICCD camera in the form of images, from which the 2-D positions can be reconstructed. The background noise and cosmic ray images have been studied. The study shows that the cosmic ray detection efficiency can reach up to 11.4%, while the false accept rate is less than 1%.