Based on the characteristics of backflow, a two-dimensional mathematical model of sediment movement was established. The complexity of the watercourse boundary at the confluence of the main stream and the tributary wa...Based on the characteristics of backflow, a two-dimensional mathematical model of sediment movement was established. The complexity of the watercourse boundary at the confluence of the main stream and the tributary was dealt with using a boundary-fitting orthogonal coordinate system. The basic equation of the two-dimensional total sediment load model, the numerical calculation format, and key problems associated with using the orthogonal curvilinear coordinate system were discussed. Water and sediment flow in the Chongqing reach of the Yangtze River were simulated. The calculated water level, flow velocity distribution, amount of silting and scouring, and alluvial distribution are found to be in agreement with the measured data, which indicates that the numerical model and calculation method are reasonable. The model can be used for calculation of flow in a relatively complicated river network.展开更多
In this study, 1D and 2D shallow-water models were coupled to simulate unsteady flow in channel networks and embayment. The 1D model solved the 1D shallow-water equations (St. Venant) using the Preissmann box method a...In this study, 1D and 2D shallow-water models were coupled to simulate unsteady flow in channel networks and embayment. The 1D model solved the 1D shallow-water equations (St. Venant) using the Preissmann box method and targeted long narrow reaches of the river networks, while the 2D model targeted broad channels and embayment and solved the 2D shallow-water equations using a semi-implicit scheme applied to an unstructured grid of triangular cells. The 1D and 2D models were solved simultaneously by building a matrix for the free surface elevation at every 1D junction and 2D cell center. Velocities were then computed explicitly based on the results at the previous time step and the updated water level. The originality of the scheme arose from a novel coupling method. The results showed that the coupled 1D/2D model produced identical results as the full 2D model in classical to benchmark problems with considerable savings in computational effort. Application of the model to the Pearl River Estuary in southern China showed that complex patterns of tidal wave propagation could be efficiently modeled.展开更多
To meet the increasing :need of fresh water and to improve the water quality of Taihu Lake, water transfer from the Yangtze River was initiated in 2002. This study was performed to investigate the sediment distributi...To meet the increasing :need of fresh water and to improve the water quality of Taihu Lake, water transfer from the Yangtze River was initiated in 2002. This study was performed to investigate the sediment distribution along the river course following water transfer. A rainfall-runoff model was first built to calculate the runoff of the Taihu Basin in 2003. Then, the flow patterns of river networks were simulated using a one-dimensional river network hydrodynamic model. Based on the boundary conditions of the flow in tributaries of the Wangyu River and the water level in Taihu Lake, a one-dimensional hydrodynamic and sediment transport numerical model of the Wangyu River was built to analyze the influences of the inflow rate of the water transfer and the suspended sediment concentration (SSC) of inflow on the sediment transport. The results show that the water transfer inflow rate and SSC of inflow have significant effects on the sediment distribution. The higher the inflow rate or SSC of inflow is, the higher the SSC value is at certain cross-sections along the :river course of water transfer. Higher inflow rate and SSC of inflow contribute to higher sediment deposition per kilometer and sediment thickness. It is also concluded that a sharp decrease of the inflow velocity at the entrance of the Wangyu River on the river course of water transfer induces intense sedimentation at the cross-section near the Changshu hydro-junction. With an increasing distance from the Changshu hydro-junction, the sediment deposition and sedimentation thickness decrease gradually along the river course.展开更多
The main stream of the Yangtze River, Dongting Lake, and the river network in the Jingjiang reach of the Yangtze River constitute a complex water system. This paper develops a one-dimensional (l-D) mathematical mode...The main stream of the Yangtze River, Dongting Lake, and the river network in the Jingjiang reach of the Yangtze River constitute a complex water system. This paper develops a one-dimensional (l-D) mathematical model for flood routing in the river network Of the Jingjiang River and Dongting Lake using the explicit finite volume method. Based on observed data during the flood periods in 1996 and 1998, the model was calibrated and validated, and the results show that the model is effective and has high accuracy. In addition, the one-dimensional mathematical model for the river network and the horizontal two-dimensional (2-D) mathematical model for the Jingjiang flood diversion area were coupled to simulate the flood process in the Jingjiang River, Dongting Lake, and the Jingjiang flood diversion area. The calculated results of the coupled model are consistent with the practical processes. Meanwhile, the results show that the flood diversion has significant effects on the decrease of the peak water level at the Shashi and Chenjiawan hydrological stations near the flood diversion gates, and the effect is more obvious in the downstream than in the upstream.展开更多
A coupled one-dimensional (1-D) and two-dimensional (2-D) channel network mathematical model is proposed for flow calculations at nodes in a channel network system in this article. For the 1-D model, the finite di...A coupled one-dimensional (1-D) and two-dimensional (2-D) channel network mathematical model is proposed for flow calculations at nodes in a channel network system in this article. For the 1-D model, the finite difference method is used to discretize the Saint-Venant equations in all channels of a looped network. The Alternating Direction Implicit (ADI) method is adopted for the 2-D model at the nodes. In the coupled model, the 1-D model provides a good approximation with small computational effort, while the 2-D model is applied for complex topography to achieve a high accuracy. An Artificial Neural Network (ANN.) method is used for the data exchange and the connectivity between the 1-D and 2-D models. The coupled model is applied to the Jingjiang-Dongting Lake region, to simulate the tremendous looped channel network system, and the results are compared with field data. The good agreement shows that the coupled hydraulic model is more effective than the conventional 1-D model.展开更多
The main river, the Dongting Lake and river networks in the Jingjiang reach of the Yangtze River constitute a complex water system, for which a full 2-D hydrodynamic model is established instead of the traditional 1-D...The main river, the Dongting Lake and river networks in the Jingjiang reach of the Yangtze River constitute a complex water system, for which a full 2-D hydrodynamic model is established instead of the traditional 1-D or compound models for simulation of such complex systems, based on the latest developments of computer technologies and numerical methods. To better handle irregular boundaries and keep the computation cost well in a reasonable limit, unstructured grids of moderate scale are used. In addition, a dynamic boundary tracking method is proposed to simulate variable flow domains at different floods, especially, when the moderate scale gird can not describe flows in narrow river-network channels at low water levels. The t9 semi-implicit method and the Eulerian-Lagrangian Method (ELM) are adopted, which make the model unconditionally stable with respect to the gravity wave speed and Courant number restrictions. Properties and efficiency of the model are discussed, and it is concluded that the new model is robust and efficient enough for the simulation of a big, complex water system. Validation tests show that the simulation results agree well with field data. It takes about 0.96 h to complete the computation of a 76 d flood, which indicates that the model is efficient enough for engineering applications.展开更多
The assessment of the radiological impact of the liquid discharges from nuclear power plants is a major issue for the envi- ronmental protection. In this study, a numerical model for the radionuclide transport in the ...The assessment of the radiological impact of the liquid discharges from nuclear power plants is a major issue for the envi- ronmental protection. In this study, a numerical model for the radionuclide transport in the aquatic environment is built, based on the hydrodynamic equations, including the complete set of Saint-Venant equations, the sediment transport equations, with consideration of several different particle sizes and the deposition and erosion of the suspended sediments, and the radionuclide transport equations The exchanges of radionuclides between water, suspended matter and bed sediments are described in terms of kinetic transfer coe- fficients. The model is used to simulate the transport of the radionuclides discharged from a planned nuclear power plant project to be sited along the lower Yangtze River. From the model results, one may see the detailed temporal-spatial evolution of the radio- nuclide contamination in the solution, in the suspended matter and in the bed sediments. The model can be used as a basic tool for studying the environmental impacts of the liquid discharges from nuclear facilities on a river system.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 50879006)
文摘Based on the characteristics of backflow, a two-dimensional mathematical model of sediment movement was established. The complexity of the watercourse boundary at the confluence of the main stream and the tributary was dealt with using a boundary-fitting orthogonal coordinate system. The basic equation of the two-dimensional total sediment load model, the numerical calculation format, and key problems associated with using the orthogonal curvilinear coordinate system were discussed. Water and sediment flow in the Chongqing reach of the Yangtze River were simulated. The calculated water level, flow velocity distribution, amount of silting and scouring, and alluvial distribution are found to be in agreement with the measured data, which indicates that the numerical model and calculation method are reasonable. The model can be used for calculation of flow in a relatively complicated river network.
基金financially supporrted by the National Key Research and Development Program of China(Grant No.2017YFC1404200)the National Natural Science Foundation of China(Grant Nos.51779150 and 51979040)
文摘In this study, 1D and 2D shallow-water models were coupled to simulate unsteady flow in channel networks and embayment. The 1D model solved the 1D shallow-water equations (St. Venant) using the Preissmann box method and targeted long narrow reaches of the river networks, while the 2D model targeted broad channels and embayment and solved the 2D shallow-water equations using a semi-implicit scheme applied to an unstructured grid of triangular cells. The 1D and 2D models were solved simultaneously by building a matrix for the free surface elevation at every 1D junction and 2D cell center. Velocities were then computed explicitly based on the results at the previous time step and the updated water level. The originality of the scheme arose from a novel coupling method. The results showed that the coupled 1D/2D model produced identical results as the full 2D model in classical to benchmark problems with considerable savings in computational effort. Application of the model to the Pearl River Estuary in southern China showed that complex patterns of tidal wave propagation could be efficiently modeled.
基金supported by State Key Development Program of Basic Research of China (Grant No.2010CB429001)the National Natural Science Foundation of China (Grant No. 51009062)the Special Fund of Hydrology-Water Resources and Hydraulic Engineering (Grant No. 2009586812)
文摘To meet the increasing :need of fresh water and to improve the water quality of Taihu Lake, water transfer from the Yangtze River was initiated in 2002. This study was performed to investigate the sediment distribution along the river course following water transfer. A rainfall-runoff model was first built to calculate the runoff of the Taihu Basin in 2003. Then, the flow patterns of river networks were simulated using a one-dimensional river network hydrodynamic model. Based on the boundary conditions of the flow in tributaries of the Wangyu River and the water level in Taihu Lake, a one-dimensional hydrodynamic and sediment transport numerical model of the Wangyu River was built to analyze the influences of the inflow rate of the water transfer and the suspended sediment concentration (SSC) of inflow on the sediment transport. The results show that the water transfer inflow rate and SSC of inflow have significant effects on the sediment distribution. The higher the inflow rate or SSC of inflow is, the higher the SSC value is at certain cross-sections along the :river course of water transfer. Higher inflow rate and SSC of inflow contribute to higher sediment deposition per kilometer and sediment thickness. It is also concluded that a sharp decrease of the inflow velocity at the entrance of the Wangyu River on the river course of water transfer induces intense sedimentation at the cross-section near the Changshu hydro-junction. With an increasing distance from the Changshu hydro-junction, the sediment deposition and sedimentation thickness decrease gradually along the river course.
基金supported by the National Key Technologies Research and Development Program (Grant No. 2006BAB05B02)
文摘The main stream of the Yangtze River, Dongting Lake, and the river network in the Jingjiang reach of the Yangtze River constitute a complex water system. This paper develops a one-dimensional (l-D) mathematical model for flood routing in the river network Of the Jingjiang River and Dongting Lake using the explicit finite volume method. Based on observed data during the flood periods in 1996 and 1998, the model was calibrated and validated, and the results show that the model is effective and has high accuracy. In addition, the one-dimensional mathematical model for the river network and the horizontal two-dimensional (2-D) mathematical model for the Jingjiang flood diversion area were coupled to simulate the flood process in the Jingjiang River, Dongting Lake, and the Jingjiang flood diversion area. The calculated results of the coupled model are consistent with the practical processes. Meanwhile, the results show that the flood diversion has significant effects on the decrease of the peak water level at the Shashi and Chenjiawan hydrological stations near the flood diversion gates, and the effect is more obvious in the downstream than in the upstream.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10872110,10902061)
文摘A coupled one-dimensional (1-D) and two-dimensional (2-D) channel network mathematical model is proposed for flow calculations at nodes in a channel network system in this article. For the 1-D model, the finite difference method is used to discretize the Saint-Venant equations in all channels of a looped network. The Alternating Direction Implicit (ADI) method is adopted for the 2-D model at the nodes. In the coupled model, the 1-D model provides a good approximation with small computational effort, while the 2-D model is applied for complex topography to achieve a high accuracy. An Artificial Neural Network (ANN.) method is used for the data exchange and the connectivity between the 1-D and 2-D models. The coupled model is applied to the Jingjiang-Dongting Lake region, to simulate the tremendous looped channel network system, and the results are compared with field data. The good agreement shows that the coupled hydraulic model is more effective than the conventional 1-D model.
基金supported by the Eleventh"Five-Year Plan" Science and Technology Program of China(Grant No. 2008BAB29B08)the National Key Basic Research Program of China(973 Program,Grant No.2007CB714100)supported by the Yangtze River Scientific Research Institute project(Grant No.CKSQ2010075)
文摘The main river, the Dongting Lake and river networks in the Jingjiang reach of the Yangtze River constitute a complex water system, for which a full 2-D hydrodynamic model is established instead of the traditional 1-D or compound models for simulation of such complex systems, based on the latest developments of computer technologies and numerical methods. To better handle irregular boundaries and keep the computation cost well in a reasonable limit, unstructured grids of moderate scale are used. In addition, a dynamic boundary tracking method is proposed to simulate variable flow domains at different floods, especially, when the moderate scale gird can not describe flows in narrow river-network channels at low water levels. The t9 semi-implicit method and the Eulerian-Lagrangian Method (ELM) are adopted, which make the model unconditionally stable with respect to the gravity wave speed and Courant number restrictions. Properties and efficiency of the model are discussed, and it is concluded that the new model is robust and efficient enough for the simulation of a big, complex water system. Validation tests show that the simulation results agree well with field data. It takes about 0.96 h to complete the computation of a 76 d flood, which indicates that the model is efficient enough for engineering applications.
文摘The assessment of the radiological impact of the liquid discharges from nuclear power plants is a major issue for the envi- ronmental protection. In this study, a numerical model for the radionuclide transport in the aquatic environment is built, based on the hydrodynamic equations, including the complete set of Saint-Venant equations, the sediment transport equations, with consideration of several different particle sizes and the deposition and erosion of the suspended sediments, and the radionuclide transport equations The exchanges of radionuclides between water, suspended matter and bed sediments are described in terms of kinetic transfer coe- fficients. The model is used to simulate the transport of the radionuclides discharged from a planned nuclear power plant project to be sited along the lower Yangtze River. From the model results, one may see the detailed temporal-spatial evolution of the radio- nuclide contamination in the solution, in the suspended matter and in the bed sediments. The model can be used as a basic tool for studying the environmental impacts of the liquid discharges from nuclear facilities on a river system.