For the 2-D wave inverse problems introduced from geophysical exploration, in this paper, the author presents integration-characteristic method to solve the velocity parameter, and then applies it to common shotpoint ...For the 2-D wave inverse problems introduced from geophysical exploration, in this paper, the author presents integration-characteristic method to solve the velocity parameter, and then applies it to common shotpoint model data, in noise-free case. The accuracy is quite good.展开更多
We present a global solution to a Riemann problem for the pressure gradient system of equations. The Riemann problem has initially two shock waves and two contact discontinuities. The angle between the two shock waves...We present a global solution to a Riemann problem for the pressure gradient system of equations. The Riemann problem has initially two shock waves and two contact discontinuities. The angle between the two shock waves is set initially to be close to 180 degrees. The solution has a shock wave that is usually regarded as a free boundary in the self-similar variable plane. Our main contribution in methodology is handling the tangential oblique derivative boundary values.展开更多
文摘For the 2-D wave inverse problems introduced from geophysical exploration, in this paper, the author presents integration-characteristic method to solve the velocity parameter, and then applies it to common shotpoint model data, in noise-free case. The accuracy is quite good.
基金Partially supported by NSF-DMS-0071858,0305497,0305114.
文摘We present a global solution to a Riemann problem for the pressure gradient system of equations. The Riemann problem has initially two shock waves and two contact discontinuities. The angle between the two shock waves is set initially to be close to 180 degrees. The solution has a shock wave that is usually regarded as a free boundary in the self-similar variable plane. Our main contribution in methodology is handling the tangential oblique derivative boundary values.