期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
基于图像抽样重组的2维核鉴别分析 被引量:1
1
作者 程正东 樊祥 章毓晋 《电子与信息学报》 EI CSCD 北大核心 2009年第12期2958-2962,共5页
2维核鉴别分析(2DKDA)存在离散度量矩阵过大而无法计算的问题。该文通过将图像抽样重组与2DKDA的结合,提出了3种基于图像抽样重组的2DKDA(SR2DKDA),它们不仅克服了2DKDA在计算上的困难,识别性能也优于2维线性鉴别分析(2DLDA)。在ORL人... 2维核鉴别分析(2DKDA)存在离散度量矩阵过大而无法计算的问题。该文通过将图像抽样重组与2DKDA的结合,提出了3种基于图像抽样重组的2DKDA(SR2DKDA),它们不仅克服了2DKDA在计算上的困难,识别性能也优于2维线性鉴别分析(2DLDA)。在ORL人脸库和UMIST人脸库的实验验证了SR2DKDA的有效性。 展开更多
关键词 2维线性鉴别分析 2维核鉴别分析 图像抽样重组 抽样重组2维核鉴别分析
下载PDF
M2DPCA与CCLDA相结合的人脸识别
2
作者 冯华丽 刘渊 《计算机工程与应用》 CSCD 2014年第12期129-132,143,共5页
CCLDA算法将图像矩阵转化为向量进行处理,该算法易造成数据维数很大,计算量复杂并容易出现"小样本"等问题。针对以上这些问题,提出了一种基于模块化2DPCA和CCLDA相结合的协同处理方法并应用于人脸识别领域。并且在ORL和XM2VT... CCLDA算法将图像矩阵转化为向量进行处理,该算法易造成数据维数很大,计算量复杂并容易出现"小样本"等问题。针对以上这些问题,提出了一种基于模块化2DPCA和CCLDA相结合的协同处理方法并应用于人脸识别领域。并且在ORL和XM2VTS人脸库上的实验结果表明,新方法在识别效果上有比以往的算法更为明显的优势。 展开更多
关键词 上下文约束 模块化二维主成分分析(M2DPCA) 基于上下文约束线性判别分析(CCLDA) 人脸识别
下载PDF
一种基于Gabor小波和2DPCA的掌纹识别改进算法 被引量:10
3
作者 苏滨 姜威 《计算机应用与软件》 CSCD 2011年第1期242-245,共4页
提出一种改进的基于Gabor小波变换和二维主分量分析2DPCA(2-Dimensional Principal component analysis)的掌纹识别。2DPCA克服了传统Gabor小波变换后直接进行主分量分析PCA(Principal component analysis)遇到的维数灾难问题,并且将PCA... 提出一种改进的基于Gabor小波变换和二维主分量分析2DPCA(2-Dimensional Principal component analysis)的掌纹识别。2DPCA克服了传统Gabor小波变换后直接进行主分量分析PCA(Principal component analysis)遇到的维数灾难问题,并且将PCA与Fisher线性判别FLD(Fisher Linear Discriminate)结合起来,利用了以前仅用于降维的PCA特征和FLD特征相融合进行掌纹识别。基于PolyU掌纹库的实验结果表明,该方法不仅有更高的识别率,而且维数更低。 展开更多
关键词 掌纹识别 GABOR小波变换 二维主分量分析 主分量分析 FISHER线性判别
下载PDF
Two linear subpattern dimensionality reduction algorithms 被引量:1
4
作者 贲晛烨 孟维晓 +1 位作者 王泽 王科俊 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2012年第5期47-53,共7页
This paper presents two novel algorithms for feature extraction-Subpattern Complete Two Dimensional Linear Discriminant Principal Component Analysis (SpC2DLDPCA) and Subpattern Complete Two Dimensional Locality Preser... This paper presents two novel algorithms for feature extraction-Subpattern Complete Two Dimensional Linear Discriminant Principal Component Analysis (SpC2DLDPCA) and Subpattern Complete Two Dimensional Locality Preserving Principal Component Analysis (SpC2DLPPCA). The modified SpC2DLDPCA and SpC2DLPPCA algorithm over their non-subpattern version and Subpattern Complete Two Dimensional Principal Component Analysis (SpC2DPCA) methods benefit greatly in the following four points: (1) SpC2DLDPCA and SpC2DLPPCA can avoid the failure that the larger dimension matrix may bring about more consuming time on computing their eigenvalues and eigenvectors. (2) SpC2DLDPCA and SpC2DLPPCA can extract local information to implement recognition. (3)The idea of subblock is introduced into Two Dimensional Principal Component Analysis (2DPCA) and Two Dimensional Linear Discriminant Analysis (2DLDA). SpC2DLDPCA combines a discriminant analysis and a compression technique with low energy loss. (4) The idea is also introduced into 2DPCA and Two Dimensional Locality Preserving projections (2DLPP), so SpC2DLPPCA can preserve local neighbor graph structure and compact feature expressions. Finally, the experiments on the CASIA(B) gait database show that SpC2DLDPCA and SpC2DLPPCA have higher recognition accuracies than their non-subpattern versions and SpC2DPCA. 展开更多
关键词 subpattern dimensionality reduction Subpattern COMPLETE TWO DIMENSIONAL linear discriminant Principal COMPONENT analysis (SpC2DLDPCA) Subpattern COMPLETE TWO DIMENSIONAL Locality Preserving Principal COMPONENT analysis (SpC2DLPPCA) gait recognition
下载PDF
A Quasi-Newton Neural Network Based Efficient Intrusion Detection System for Wireless Sensor Network
5
作者 A.Gautami J.Shanthini S.Karthik 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期427-443,共17页
In Wireless Sensor Networks(WSN),attacks mostly aim in limiting or eliminating the capability of the network to do its normal function.Detecting this misbehaviour is a demanding issue.And so far the prevailing researc... In Wireless Sensor Networks(WSN),attacks mostly aim in limiting or eliminating the capability of the network to do its normal function.Detecting this misbehaviour is a demanding issue.And so far the prevailing research methods show poor performance.AQN3 centred efficient Intrusion Detection Systems(IDS)is proposed in WSN to ameliorate the performance.The proposed system encompasses Data Gathering(DG)in WSN as well as Intrusion Detection(ID)phases.In DG,the Sensor Nodes(SN)is formed as clusters in the WSN and the Distance-based Fruit Fly Fuzzy c-means(DFFF)algorithm chooses the Cluster Head(CH).Then,the data is amassed by the discovered path.Next,it is tested with the trained IDS.The IDS encompasses‘3’steps:pre-processing,matrix reduction,and classification.In pre-processing,the data is organized in a clear format.Then,attributes are presented on the matrix format and the ELDA(entropybased linear discriminant analysis)lessens the matrix values.Next,the output as of the matrix reduction is inputted to the QN3 classifier,which classifies the denial-of-services(DoS),Remotes to Local(R2L),Users to Root(U2R),and probes into attacked or Normal data.In an experimental estimation,the proposed algorithm’s performance is contrasted with the prevailing algorithms.The proposed work attains an enhanced outcome than the prevailing methods. 展开更多
关键词 Distance fruit fly fuzzy c-means(DFFF) entropy-based linear discriminant analysis(ELDA) Quasi-Newton neural network(QN3) remote to local(R2L) denial of service(DoS) user to root(U2R)
下载PDF
基于内容图像检索中的优化鉴别特征 被引量:11
6
作者 施智平 李清勇 +2 位作者 赵晓东 何清 史忠植 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2012年第12期1592-1598,共7页
为了提高基于内容图像检索系统的检索速度和准确率,提出一种融合两类线性鉴别分析的方法来提取低维的优化鉴别特征.首先把多类问题转换为多个两类问题,对每个两类问题进行线性鉴别分析,得到鉴别向量;所有的鉴别向量组成鉴别变换矩阵,对... 为了提高基于内容图像检索系统的检索速度和准确率,提出一种融合两类线性鉴别分析的方法来提取低维的优化鉴别特征.首先把多类问题转换为多个两类问题,对每个两类问题进行线性鉴别分析,得到鉴别向量;所有的鉴别向量组成鉴别变换矩阵,对图像特征进行投影变换得到鉴别特征;最后用变换后的鉴别特征进行图像检索或分类,得到准确率更高的结果.该方法中鉴别特征空间的维数与类别数相等.与多种特征优化方法进行比较的实验结果表明,采用文中方法可以显著地提高图像检索和图像分类的性能. 展开更多
关键词 两类线性鉴别分析 图像检索 图像分类 鉴别特征
下载PDF
人脸与虹膜特征层融合模型的研究 被引量:15
7
作者 何国辉 甘俊英 +1 位作者 李春芝 高建虎 《电子学报》 EI CAS CSCD 北大核心 2007年第7期1365-1371,共7页
多生物特征的融合与识别可提高身份识别系统的整体性能.本文在研究特征层融合的基础上,结合二维Fisher线性判别分析(2-Dimensional Fisher Linear Discriminant Analysis,2DFLD),提出了一种人脸与虹膜特征融合与识别模型.首先,对人脸图... 多生物特征的融合与识别可提高身份识别系统的整体性能.本文在研究特征层融合的基础上,结合二维Fisher线性判别分析(2-Dimensional Fisher Linear Discriminant Analysis,2DFLD),提出了一种人脸与虹膜特征融合与识别模型.首先,对人脸图像与虹膜图像分别进行压缩降维处理,得到相应的初始特征矩阵.然后将人脸与虹膜的初始特征矩阵进行组合,获得组合特征矩阵.同时,利用2DFLD算法对组合特征矩阵进行融合,获得了人脸与虹膜的融合特征.最后运用最小距离分类器进行识别.基于ORL(Olivetti Research Laboratory)人脸数据库和CASIA(Chinese Academy ofSciences,Institute of Automation)虹膜数据库的实验结果表明,该模型实现了特征层融合,不仅克服了"小样本"效应,而且有效提高了身份识别的正确识别率,为多生物特征身份识别提供了一种有效模型. 展开更多
关键词 二维Fishe 线性判别分析 特征融合 多生物特征识别 人脸识别 虹膜识别
下载PDF
基于模糊积分的不完全小波包子空间集成人脸识别 被引量:2
8
作者 翟俊海 王熙照 张素芳 《模式识别与人工智能》 EI CSCD 北大核心 2014年第9期794-801,共8页
提出一种基于模糊积分的不完全小波包子空间集成人脸识别方法,并与五种相关方法进行实验比较.首先对人脸图像做不完全小波包分解,对双向低频子空间图像直接进行特征提取,对含有一个方向低频成分的高频子空间图像先求平均,再进行提取特征... 提出一种基于模糊积分的不完全小波包子空间集成人脸识别方法,并与五种相关方法进行实验比较.首先对人脸图像做不完全小波包分解,对双向低频子空间图像直接进行特征提取,对含有一个方向低频成分的高频子空间图像先求平均,再进行提取特征;然后用得到的不同子空间图像训练模糊分类器;最后用模糊积分融合训练的模糊分类器.该方法能够充分利用不同频率小波子空间图像中包含的有用信息,从而提高人脸识别的精度.在ORL、YALE、JAFFE和FERET这4个人脸数据库上进行实验,实验结果表明该方法在识别精度方面均优于五种相关方法. 展开更多
关键词 人脸识别 小波包变换 子空间集成 二维主成分分析 二维线性判别分析
下载PDF
基于相对梯度的人脸识别方法
9
作者 高洪志 邓琨 +1 位作者 姚璐 赵蕴龙 《计算机应用》 CSCD 北大核心 2009年第11期3037-3039,3059,共4页
在原始相对梯度算子的基础上,提出一种新的相对梯度算子,并将它与二维主成分分析(2DPCA)或者二维Fisher线性判别分析(2DFLD)相结合,形成一种基于改进相对梯度算子的人脸识别算法。在AR库和Yale_B库上的实验表明,基于改进相对梯度算子的... 在原始相对梯度算子的基础上,提出一种新的相对梯度算子,并将它与二维主成分分析(2DPCA)或者二维Fisher线性判别分析(2DFLD)相结合,形成一种基于改进相对梯度算子的人脸识别算法。在AR库和Yale_B库上的实验表明,基于改进相对梯度算子的人脸识别算法对人脸图像的光照、表情等变化均具有较好的鲁棒性,识别准确率明显高于只用2DPCA或2DFLD进行特征抽取的人脸识别方法,以及基于原始相对梯度算子的人脸识别算法。同时采用三种不同大小的窗口分别进行实验,实验结果证明,当窗口大小为3×3时,识别效果相对最好。 展开更多
关键词 相对梯度 人脸识别 二维主成分分析 二维Fisher线性判别分析
下载PDF
结合子空间投影和流形学习的人脸识别系统研发 被引量:1
10
作者 邓素娟 周鑫燚 唐年庆 《成都师范学院学报》 2015年第3期109-112,共4页
人脸识别是一种广泛使用的生物特征识别技术。文章提出一种结合子空间投影和流形学习的高效人脸识别方法。该方法利用二维线性鉴别分析提取人脸的不变性特征,能有效提取人脸图像的局部特征并用于人脸识别。实验结果显示,此方法能有效克... 人脸识别是一种广泛使用的生物特征识别技术。文章提出一种结合子空间投影和流形学习的高效人脸识别方法。该方法利用二维线性鉴别分析提取人脸的不变性特征,能有效提取人脸图像的局部特征并用于人脸识别。实验结果显示,此方法能有效克服光照、表情和遮挡等情况,具有较高的识别准确率。 展开更多
关键词 人脸识别 子空间投影 流形 二维线性鉴别分析
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部