Diesel engines are the major contributors of various types of air polluting gases like carbon monoxide, oxides of nitrogen, smoke, etc. Improvement of fuel properties is essential for suppression of Diesel pollutant e...Diesel engines are the major contributors of various types of air polluting gases like carbon monoxide, oxides of nitrogen, smoke, etc. Improvement of fuel properties is essential for suppression of Diesel pollutant emissions along with the optimization of design factors and after treatment equipment. Studies conducted in the past have shown that a significant reduction were obtained in the emissions using oxygenates. This paper investigates the performance and emission characteristics of a direct injection Diesel engine fueled with 2 Ethoxy Ethyl Acetate (EEA) blends. Different fuel blends which contain 5%, 10% and 15% of EEA were prepared and the effect of these blends on performance and emissions were studied on a single cylinder direct injection Diesel engine. The blends were tested under different load conditions and the result showed that EEA blended fuels improves the performance of the engine and reduce the emission level significantly.展开更多
The CeO_(2)-TiO_(2)@MnO_(x) catalyst was prepared by the co-precipitation method and applied to the photothermocatalysis system of ethyl acetate and NO simultaneous degradation under H_(2)O at low temperature,which in...The CeO_(2)-TiO_(2)@MnO_(x) catalyst was prepared by the co-precipitation method and applied to the photothermocatalysis system of ethyl acetate and NO simultaneous degradation under H_(2)O at low temperature,which introduced Ce into TiO_(2)@MnO_(x) hollow sptrera structure.The optimum TiO_(2)/MnO_(x) ratio and Ce introducing amount were obtained in the process.Among of them,the NO and ethyl acetate conversion percentage of TiO_(2)@MnO_(x)(n_(Mn):n_(Ti)=40:40)is 74%and 62%at 240℃,respectively.CeO_(2)-TiO_(2)@MnO_(x)(n_(Mn):n_(Ce)=1:1)exhibits the best catalytic performance,its efficiency for NO conversion is 83%and the conversion of ethyl acetate reaches 72%at 240℃.In addition,it is confirmed that the Cedoped nanocomposites have more uniform dispersion through various characterization and analysis methods.Meanwhile,these catalysts have a large specific surface area as well as a large number of surface-active oxygen and oxygen vacancies.It can further improve the catalytic performance based on the adjusted ratio of active components.Moreover,this work investigated the relationship between multi-metal interactions and catalytic performance in the presence of H_(2)O.Finally,the possible reaction pathways for the simultaneous removal of NO and ethyl acetate were explored in our system.展开更多
The catalytic oxidation of ethyl acetate(EA)was studied over CuO/CeO_(2) catalysts which were prepared by ball milling with different precursors(copper oxide,cerium acetate,cerium dioxide,copper acetate and cerium hyd...The catalytic oxidation of ethyl acetate(EA)was studied over CuO/CeO_(2) catalysts which were prepared by ball milling with different precursors(copper oxide,cerium acetate,cerium dioxide,copper acetate and cerium hydroxide).The CuO/CeO_(2) catalyst(O-A)prepared with copper oxide and cerium acetate as precursors shows very high catalytic activity that 100%EA conversion is achieved at low temperature of 220℃.It is found that specific surface area(112.8 m^(2)/g),particle size of CuO(3.5 nm)and proportion of oxygen vacancies are prominent on the O-A catalyst.Oxygen vacancies in CeO_(2)support are beneficial to enhancing the adsorption and activation of the oxygen.More finely dispersed CuO particles and oxygen vacancies which are derived from the synergistic interaction of Cu-Ce species play an important role in the catalytic oxidation of EA.展开更多
文摘Diesel engines are the major contributors of various types of air polluting gases like carbon monoxide, oxides of nitrogen, smoke, etc. Improvement of fuel properties is essential for suppression of Diesel pollutant emissions along with the optimization of design factors and after treatment equipment. Studies conducted in the past have shown that a significant reduction were obtained in the emissions using oxygenates. This paper investigates the performance and emission characteristics of a direct injection Diesel engine fueled with 2 Ethoxy Ethyl Acetate (EEA) blends. Different fuel blends which contain 5%, 10% and 15% of EEA were prepared and the effect of these blends on performance and emissions were studied on a single cylinder direct injection Diesel engine. The blends were tested under different load conditions and the result showed that EEA blended fuels improves the performance of the engine and reduce the emission level significantly.
基金Project supported by the Foundation of Guangxi Science and Technology of Base&Talent Special Program(AD20159067)Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology(2101Z002)。
文摘The CeO_(2)-TiO_(2)@MnO_(x) catalyst was prepared by the co-precipitation method and applied to the photothermocatalysis system of ethyl acetate and NO simultaneous degradation under H_(2)O at low temperature,which introduced Ce into TiO_(2)@MnO_(x) hollow sptrera structure.The optimum TiO_(2)/MnO_(x) ratio and Ce introducing amount were obtained in the process.Among of them,the NO and ethyl acetate conversion percentage of TiO_(2)@MnO_(x)(n_(Mn):n_(Ti)=40:40)is 74%and 62%at 240℃,respectively.CeO_(2)-TiO_(2)@MnO_(x)(n_(Mn):n_(Ce)=1:1)exhibits the best catalytic performance,its efficiency for NO conversion is 83%and the conversion of ethyl acetate reaches 72%at 240℃.In addition,it is confirmed that the Cedoped nanocomposites have more uniform dispersion through various characterization and analysis methods.Meanwhile,these catalysts have a large specific surface area as well as a large number of surface-active oxygen and oxygen vacancies.It can further improve the catalytic performance based on the adjusted ratio of active components.Moreover,this work investigated the relationship between multi-metal interactions and catalytic performance in the presence of H_(2)O.Finally,the possible reaction pathways for the simultaneous removal of NO and ethyl acetate were explored in our system.
基金Project supported by the Shanghai Rising-Star Program(21QA1406600)the NSFC-Zhejiang Joint Fund for Integration of Industrialization and Diversification(U1809214)Zhoushan City Science&Technology Research Project(2019C21012).
文摘The catalytic oxidation of ethyl acetate(EA)was studied over CuO/CeO_(2) catalysts which were prepared by ball milling with different precursors(copper oxide,cerium acetate,cerium dioxide,copper acetate and cerium hydroxide).The CuO/CeO_(2) catalyst(O-A)prepared with copper oxide and cerium acetate as precursors shows very high catalytic activity that 100%EA conversion is achieved at low temperature of 220℃.It is found that specific surface area(112.8 m^(2)/g),particle size of CuO(3.5 nm)and proportion of oxygen vacancies are prominent on the O-A catalyst.Oxygen vacancies in CeO_(2)support are beneficial to enhancing the adsorption and activation of the oxygen.More finely dispersed CuO particles and oxygen vacancies which are derived from the synergistic interaction of Cu-Ce species play an important role in the catalytic oxidation of EA.