Ti/Sb-SnO2 anodes were prepared by thermal decomposition to examine the influence of the amount of Sb dopant on the structure and electrocatalytic capability of the electrodes in the oxidation of 4-chlorophenol. The p...Ti/Sb-SnO2 anodes were prepared by thermal decomposition to examine the influence of the amount of Sb dopant on the structure and electrocatalytic capability of the electrodes in the oxidation of 4-chlorophenol. The physicochemical properties of the Sb-SnO2 coating were markedly influenced by different amounts of Sb dopant. The electrodes, which contained 5% Sb dopant in the coating, presented a much more homogenous surface and much smaller mud-cracks, compared with Ti/Sb-SnO2 electrodes containing 10% or 15% Sb dopant, which exibited larger mud cracks and pores on the surface. However, the main microstructure remained unchanged with the addition of the Sb dopant. No new crystal phase was observed by X-ray diffraction (XRD). The electrochemical oxidation of 4-chlorophenol on the Ti/SnO2 electrode with 5% Sb dopant was inclined to electrochemical combustion; while for those containing more Sb dopant, intermediate species were accumulated. The electrodes with 5% Sb dopant showed the highest efficiency in the bulk electrolysis of 4-chlorophenol at a current density of 20 mA/cm^2 for 180 min; and the removal rates of 4-chlorophenol and COD were 51.0% and 48.9%, respectively.展开更多
The biodegradations of phenol and 4-chlorophenol (4-cp) were studied using the mutant strain CTM 2 obtained by the He-Ne laser irradiation on wild-type Candida tropicalis. The results showed that the capacity of the...The biodegradations of phenol and 4-chlorophenol (4-cp) were studied using the mutant strain CTM 2 obtained by the He-Ne laser irradiation on wild-type Candida tropicalis. The results showed that the capacity of the CTM 2 to biodegrade 4-cp was increased up to 400 mg·L^-1 within 59.5 h. In the dual-substrate biodegradation both velocity and capacity of the CTM 2 to degrade 4-cp increased with low-concentration phenol. A totalof 400 mg·L^-1 4-cp was completely degraded within 50.'5 h in thepresence of 300 mg·L^-1 phenol. The maximum 4:cp biodegegradation could reach 440 mg·L^1 with 120 mg·L^1 phenol. Low-concentration 4-cp caused great inhibition on the CTM 2 to degrade phenol. In addition, the kinetic behaviors were described using the kinetic model proposed in this lab.展开更多
Experimental data are presented to test and validate a kinetic model for the oxidation of 2 chlorophenol wastewater by photo assisted Fenton process. The data showed that this process had produced good effects under a...Experimental data are presented to test and validate a kinetic model for the oxidation of 2 chlorophenol wastewater by photo assisted Fenton process. The data showed that this process had produced good effects under acidic conductions. Up to 90% 2 chlorophenol was removed after 90 minute reaction time with H 2O 2 of 25% COD Cr, in , while in UV/H 2O 2 system only 16 8% 2 chlorophenol was removed after one hour treatment. The optimal pH in this reaction occurred between pH 3 0 and pH 4.0. The reaction kinetics for photo assisted Fenton process experimented in this research was investigated. Kinetic models were proposed for the treatment of 2 chlorophenol wastewater. The reaction was found to follow the 2nd order. The equations of reaction kinetics are as follows:-d[RH]d t = K RH [RH][H 2O 2] 0exp (-K H 2O 2 t );-d[COD Cr ]d t = K COD Cr [COD Cr ][H 2O 2] 0exp(-K′ t ). The prediction of the models was found to be in a good agreement with experimental results, thus confirming the proposed reaction mechanism.展开更多
Fenton oxidation was used as the pretreatment of 2-chlorophenol wastewater with the objective of dechlorination, as it was considered that after breakage of aryl—Cl bond, the generated intermediates may be easily bio...Fenton oxidation was used as the pretreatment of 2-chlorophenol wastewater with the objective of dechlorination, as it was considered that after breakage of aryl—Cl bond, the generated intermediates may be easily biodegraded. Hence, the optimization of pH and the low Fenton reagent doses for dechlorination was investigated. More than 99% dechlorination is obtained at the optimal pH 4 and the Fenton reagent doses of 86 mmol/L H2 O2 and 2.87 mmol/L Fe2+. The corresponding 2-chlorophenol is degraded completely, 80.02% COD is also removed, and the biodegradability, evaluated in terms of the BOD5 /COD ratio, is increased up to 0.41. To test the effect of this pretreatment, the pretreated 2-chlorophenol wastewater was fed to a sequencing batch reactor(SBR). The results show that complete mineralization is achieved. It is demonstrated that, for the treatment of recalcitrant compounds like 2-chlorophenol, the Fenton pretreatment could be quite effective and economical for enhancing the biodegradability in a Fenton-biological coupled system.展开更多
A microscopic diffusion-reaction modei was developed to simulate in-situ ozonation for the remediation of contaminated soil, i.e., to predict the temporal and spatial distribution of target contaminant in the subsurfa...A microscopic diffusion-reaction modei was developed to simulate in-situ ozonation for the remediation of contaminated soil, i.e., to predict the temporal and spatial distribution of target contaminant in the subsurface. The sequential strategy was employed to obtain the numerical solution of the modei using finite difference method. A non-uniform grid of discretization points was emploved to increase the accuracy of the numerical solution by means of coordinate transformation. One-dimensional column tests were conducted to verify the modei. The column was packed with simulated soils that were spiked with 2-chlorophenol. Ozone gas passed through the column at a flow rate of 100ml·min-1. The residual 2-chlorophenol content at different depths of the column was determined at fixed time intervals. Compared the experimental data with the simulated values, it was found that the mathematical modei fitted data well during most time of the experiment.展开更多
In this paper,the aqueous two-phase systems(ATPS)containing n-ethylpyridinium tetrafluoroborate([EPy]BF_(4)),sodium-based salts,and water were studied and the extraction efficiency of 2-chlorophenol was measured to st...In this paper,the aqueous two-phase systems(ATPS)containing n-ethylpyridinium tetrafluoroborate([EPy]BF_(4)),sodium-based salts,and water were studied and the extraction efficiency of 2-chlorophenol was measured to study the ATPS performance in extracting phenolic compounds.The binodal curves of[EPy]BF_(4)+sodium carbonate(Na_(2)CO_(3))ATPS and[EPy]BF_(4)+sodium dihydrogen phosphate(NaH_(2)PO_(4))ATPS have been determined at 308.15 K,318.15 K,and 328.15 K and atmospheric pressure.After getting good correlation with Merchuk equation,the binodal curves together with gravimetric method were used to calculate the tie-lines data.Furthermore,the reliability of tie-lines data was verified using Othmer-Tobias and Bancroft equations.Then,the salt influence and temperature influence on the phase behavior were discussed and the results show the salt-outing ability of Na_(2)CO_(3) is better than NaH_(2)PO_(4).With the aim of studying the ATPS performance in extracting phenolic compounds,extraction efficiency for 2-chlorophenol at different temperatures were studied and the results show that[EPy]BF_(4)+Na_(2)CO_(3) ATPS is preferred than[EPy]BF_(4)+NaH_(2)PO_(4) ATPS in applications.展开更多
The reaction mechanism of 3 chlorophenol with OH, H in aqueous solution was studied by transient technology. The 3 chlorophenol aqueous solutions have been saturated with air or N 2 previously. Under alkaline condi...The reaction mechanism of 3 chlorophenol with OH, H in aqueous solution was studied by transient technology. The 3 chlorophenol aqueous solutions have been saturated with air or N 2 previously. Under alkaline condition, the reaction of OH radical with 3 chlorophenol produces 3 chlorinated phenoxyl radical, with the absorption peaks at 400 nm and 417 nm. Under neutral condition, the reaction of OH radical with 3 chlorophenol produces OH adduct with the maximal absorption at about 340 nm. And in acid solution, the reaction of H with 3 chlorophenol produces H adduct with the maximal absorption at about 320 nm. 3 chlorophenol is compared with 4 and 2 chlorophenols from the free radical pathways. The results show that the positions of chlorine on the aromatic ring strongly influence the dehalogenation and degradation process.展开更多
In order to address the complex cometabolic degradation of toxic compounds, batch experiments on the biodegradation of 2-chlorophenol (2-CP) and phenol by Pseudomonas putida were carried out. The experimental result...In order to address the complex cometabolic degradation of toxic compounds, batch experiments on the biodegradation of 2-chlorophenol (2-CP) and phenol by Pseudomonas putida were carried out. The experimental results show that 2-CP has an inhibitory effect on cell growth and phenol degradation, which demonstrates that the interaction between substrates affects cell growth and substrate degradation. A kinetic model of cell growth and substrate transformation was also developed. The square of the correlation coefficient from the experiment was 0.97, indicating that this model properly simulates the cometabolic degradation of 2-CP and phenol.展开更多
Ultrasound assisted electrocatalytic process was used for enhancing decomposition efficiency of organic compounds. In this paper, the effect of ultrasonic frequency, ultrasonic intensity and pH value on 3-chlorophenol...Ultrasound assisted electrocatalytic process was used for enhancing decomposition efficiency of organic compounds. In this paper, the effect of ultrasonic frequency, ultrasonic intensity and pH value on 3-chlorophenol decomposition were studied. It was found that 3-chlorophenol in aqueous solution can be markedly decomposed by ultrasound assisted electrocatalytic process. The rate of decomposition increased with the increase of frequency, and low frequency is proper in the ultrasound assisted electrocatalytic system. The removal of 3-chlorophenol increased visibly with the increase of ultrasonic intensity until the intensity of 1.56 W/cm2. Alkaline condition is beneficial to 3-chlorophenol decomposition, the rate at pH 9.08 was higher than pH 2.48 and 6.85. The major intermediate formed during 3-chlorophenol decomposition was 2-chloro-pbenzoquinone, which was readily decomposed by ultrasound assisted electrocatalytic process.展开更多
Chlorophenols are known as persistent organic pollutants.Therefore,research on the removal of chlorophenols has attracted widespread attention.Hereto,the photocatalytic degradation of 4-chlorophenol by Gd-doped β-Bi2...Chlorophenols are known as persistent organic pollutants.Therefore,research on the removal of chlorophenols has attracted widespread attention.Hereto,the photocatalytic degradation of 4-chlorophenol by Gd-doped β-Bi2O3 under visible light irradiation was studied.The results showed that Gd-doped β-Bi2O3 materials are efficient catalysts for the photocatalytic degradation of chlorophenols,and 2%(atomic traction)Gd-doped β-Bi2O3 exhibits the highest photocatalytic activity for 4-chlorophenol degradation,because doping an appropriate amount of Gd^3+ions can effectively reduce the recombination rate of the photogenerated e^-/h^+pairs and then enhance the photocatalytic performance.When the reaction was carried out at 25 ℃ for 6 h using the 2% Gd-doped/β-Bi2O3 micro/nano materials of 200 mg and at air flow rate of 40 mL/min,the degradation rate of 4-chlorophenol reached 92.3%.Additionally based on the analysis of the products,it was speculated that the dominant photocatalytic degradation mechanism of 4-chlorophenol by Gd-doped β-Bi2O3 under visible light irradiation is an oxidative process involving an attack by the hydroxyl radical.展开更多
A fiber optic 2-cholrophenol(2-CP) sensor was developed based on the fluorescence quenching of molecular oxygen on the oxygen-sensitive membrane and O2 consumption during catalytic oxidation reaction of 2-CP. The 2-...A fiber optic 2-cholrophenol(2-CP) sensor was developed based on the fluorescence quenching of molecular oxygen on the oxygen-sensitive membrane and O2 consumption during catalytic oxidation reaction of 2-CP. The 2-CP concentration can be determined by utilizing a lock-in amplifier to measure the change in the fluorescence lifetime of an oxygen-sensitive membrane, in which the tris(2,2′-bipyridyl) ruthenium(II) chloride complexes(Ru(II)(byp)3Cl2) were immobilized in cellulose acetate(CA) via simple hybridized approach. The experimental results show the good linear relationship between the phase delay of sensitive membrane and 2-CP concentration in its detection range of 1×10-7 to 1×10-5 mol/L and 1×10-5 to 1×10-4 mol/L. The detection limit of the sensor is 7×10-8 mol/L(S/N=3) and the response time is 5 min. Our experimental measurements confirmed good response characteristics of the as-prepared fiber optic 2-CP sensor, as well as its capability to detect the 2-CP concentration in practical water samples.展开更多
A series of phosphorus-modified titanium dioxide samples with varying P/Ti atomic ratio were conveniently prepared via a conventional solgel route. The effects of phosphorus content and calcination temperature on the ...A series of phosphorus-modified titanium dioxide samples with varying P/Ti atomic ratio were conveniently prepared via a conventional solgel route. The effects of phosphorus content and calcination temperature on the crystalline structure, grain growth, surface area, and the photocatalytic activity of P-modified TiO2 were investigated. The XRD results showed that P species slow down the particle growth of anatase and increase the anatase-to-rutile phase transformation temperature to more than 900°C. Kinetic studies on the P-modified TiO2 to degraded 4-chlorophenol had found that the TP5500 prepared by adopting a P/Ti atomic ratio equal to 0.05 and calcined at 500°C had an apparent rate constant equal to 0.0075 min 1, which is superior to the performance of a commercial photocatalyst Degussa P25 Kapp = 0.0045 min 1 and of unmodified TiO2 (TP0500) Kapp = 0.0022 min 1. From HPLC analyses, various hydroxylated intermediates formed during oxidation had been identified, including hydroquinone (HQ), benzoquinone (BQ) and (4CC) 4-chlorocatechol as main products. Phytotoxicity was assessed before and after irradiation against seed germination of tomato (Lycopersicon esculentum) whereas acute toxicity was assessed by using Folsomia candida as the test organism. Intermediates products were all less toxic than 4-chlorophenol and a significant removal of the overall toxicity was accomplished展开更多
The synergic effect mechanism of photo-electrochemical oxidation is investigated in detail through reaction products and kinetics analysis in a photo-electric integral reactor with 2-chlorophenol (2-CP) as the model p...The synergic effect mechanism of photo-electrochemical oxidation is investigated in detail through reaction products and kinetics analysis in a photo-electric integral reactor with 2-chlorophenol (2-CP) as the model pollutant. A kinetics model is constructed for the combinatorial photo-electrochemical (CPE) degradation. A remarkable synergetic effect, which can significantly enhance the mineralization rate of the CPE process, is verified by the comparison of apparent kinetic constants. In the CPE process, complemental effects with multi-level and multi-pathway for pollutants degradation under our experimental conditions are speculated. It is proved that the degradation pathways are not only the simple summation of that of photolysis and electrolysis, but the formation of synergic effect through combination of several new acting approaches. The degradation efficiency is enhanced considerably by three factors, control of electrode poisoning by the UV irradiation, control of excitation and reaction trend of pollutants molecules by the UV irradiation, and control of activation effect and transfer trend by the oriented direct current (DC) electric field. An advanced oxidation system is set up through manifold of free radicals chain reactions in the CPE reactions, so that the aqueous organics can be mineralized fast and completely. It is proven by the kinetics analysis that the mineralization of organic pollutants is mainly attributed to the generation of very active hydroxyl radicals (OH@) in bulk solution from the CPE synergetic effect.展开更多
A coupled ultrasound/electrocatalysis(US/EC) process was used to enhance the decomposition effi-ciency of organics.The synergetic kinetics and the mechanism of 2-chlorophenol(2-CP) decomposi-tion with coupled US/EC we...A coupled ultrasound/electrocatalysis(US/EC) process was used to enhance the decomposition effi-ciency of organics.The synergetic kinetics and the mechanism of 2-chlorophenol(2-CP) decomposi-tion with coupled US/EC were studied.It was found that in a US/EC process 2-CP is attacked by active radicals(such as hydroxyl radicals) to form 2-chloro-p-benzoquinone,and the latter is oxidized to simple organic acids when the ring is opened.The enhancement factor expressed by the apparent rate constant of 2-CP decomposition with coupled US/EC is 1.324 at a current density of 20 mA·cm-2,an ultrasonic frequency of 20 kHz,an ultrasonic intensity of 0.27 W·cm-2,and a 2-CP initial concentration of 200 mg·L-1,which means that a synergetic effect exists.A model derived from Langmuir adsorption theory of solid surface and reaction kinetics equations can describe exactly the decomposition of 2-CP with coupled US/EC.The numerical values are in good agreement with the experimental data.The model parameters are associated with reaction conditions.展开更多
Ce-TiO2/CA(carbon aerogel) electrode was prepared by sol impregnation approach. The XRD(X-ray diffraction) and Raman spectra reveal that the TiO2 is anatase. The UV-vis diffuse reflectance spectra show that the op...Ce-TiO2/CA(carbon aerogel) electrode was prepared by sol impregnation approach. The XRD(X-ray diffraction) and Raman spectra reveal that the TiO2 is anatase. The UV-vis diffuse reflectance spectra show that the optical absorption edge for Ce-TiO_2/CA is red-shifted to 535 nm compared with TiO_2/CA. Under visible light irradiation, the photocurrent density increment on Ce-TiO_2/CA is 75 times that on Ce-TiO_2/FTO(fluorine-doped tin oxide). The electrochemical impedance spectroscopy reveals that the conductivity of CeTiO_2/CA is much better than the Ce-TiO_2/FTO. Furthermore, the Ce-TiO_2/CA can be used to the highest electrosorptive photodegradation for 4-chlorophenol wastewater degradation, which is ascribed predominantly to the efficient reduction of electron-hole pair recombination in the photocatalysts.展开更多
The degradation of 4-chlorophenol (4-CP) by using gamma rays generated by a 60Co source in the presence of O3 was investigated. The radiolysis of 4-CP and the kinetics of 4-CP min-eralization were analyzed based on th...The degradation of 4-chlorophenol (4-CP) by using gamma rays generated by a 60Co source in the presence of O3 was investigated. The radiolysis of 4-CP and the kinetics of 4-CP min-eralization were analyzed based on the determination of total organic carbon (TOC). The influence of initial 4-CP concentration and the free radicals scavengers (such as NaHCO3 and t-butanol) on the 4-CP degradation was also studied. The results showed that when the radiation rate was 336 Gy·min?1, 4-chlorophenol at concentration of 10 mg·L?1 could be completely degraded at the radiation dose of 2 kGy. The degradation of 4-chlorophenol could be described by a first-order reaction model, the rate constant of 4-CP degradation by combined ozonation and radiation was 0.1016 min?1, which was 2.4 times higher than the sum of radiation (0.0294 min?1) and ozonation (0.0137 min?1). It re-vealed that the combination of radiation and ozonation resulted in synergistic effect, which can re-markably increase the degradation efficiency of 4-CP.展开更多
The photocatalytic degradation of phenol and 4-chlorophenol (4-CP) in aqueous suspensions with the use of titanium dioxide (TiO2 ) under UV irradiation was examined. The effects of different supporting materials m...The photocatalytic degradation of phenol and 4-chlorophenol (4-CP) in aqueous suspensions with the use of titanium dioxide (TiO2 ) under UV irradiation was examined. The effects of different supporting materials mixed physically with TiO2 were studied to achieve maximum degradation efficiency. Among the three supports, namely activated carbon (AC), silica (SiO2 ) and zeolite (ZSM-5), all exhibited paramount efficiency for degradation of phenol and 4-CP and was better than TiO2 alone. The optimum concentration was found to be 50 mg for all supporting materials. The efficiency order of the three supports was as follows: AC 〉 ZSM-5 〉 SiO2 , respectively. Whilst, the degradation of phenol and 4-CP was improved from 70.6% to 87.6% and 80.6% to 89.7%, respectively, within 120 min photocatalysis in the presence of optimal amount of AC. The degradation was also comparatively enhanced in the presence of cheaper rice husk and the activity was closed to ZSM-5 and lower than AC.展开更多
基金Project supported by the Institute of Environmental Engineering,Peking University and China Postdoctoral Science Foundation(No.2005037032)
文摘Ti/Sb-SnO2 anodes were prepared by thermal decomposition to examine the influence of the amount of Sb dopant on the structure and electrocatalytic capability of the electrodes in the oxidation of 4-chlorophenol. The physicochemical properties of the Sb-SnO2 coating were markedly influenced by different amounts of Sb dopant. The electrodes, which contained 5% Sb dopant in the coating, presented a much more homogenous surface and much smaller mud-cracks, compared with Ti/Sb-SnO2 electrodes containing 10% or 15% Sb dopant, which exibited larger mud cracks and pores on the surface. However, the main microstructure remained unchanged with the addition of the Sb dopant. No new crystal phase was observed by X-ray diffraction (XRD). The electrochemical oxidation of 4-chlorophenol on the Ti/SnO2 electrode with 5% Sb dopant was inclined to electrochemical combustion; while for those containing more Sb dopant, intermediate species were accumulated. The electrodes with 5% Sb dopant showed the highest efficiency in the bulk electrolysis of 4-chlorophenol at a current density of 20 mA/cm^2 for 180 min; and the removal rates of 4-chlorophenol and COD were 51.0% and 48.9%, respectively.
基金Supported by the science and Technology Innovative Talents Foundation of China (2006RFQXS070), the Youth Academic Cadreman Project of Heilongjiang Province (1152G068), Scientific Research Fund of Heilongjiang Province (11523063) and the Science Foundation for Post Doctorate of China (20070410268).
文摘The biodegradations of phenol and 4-chlorophenol (4-cp) were studied using the mutant strain CTM 2 obtained by the He-Ne laser irradiation on wild-type Candida tropicalis. The results showed that the capacity of the CTM 2 to biodegrade 4-cp was increased up to 400 mg·L^-1 within 59.5 h. In the dual-substrate biodegradation both velocity and capacity of the CTM 2 to degrade 4-cp increased with low-concentration phenol. A totalof 400 mg·L^-1 4-cp was completely degraded within 50.'5 h in thepresence of 300 mg·L^-1 phenol. The maximum 4:cp biodegegradation could reach 440 mg·L^1 with 120 mg·L^1 phenol. Low-concentration 4-cp caused great inhibition on the CTM 2 to degrade phenol. In addition, the kinetic behaviors were described using the kinetic model proposed in this lab.
文摘Experimental data are presented to test and validate a kinetic model for the oxidation of 2 chlorophenol wastewater by photo assisted Fenton process. The data showed that this process had produced good effects under acidic conductions. Up to 90% 2 chlorophenol was removed after 90 minute reaction time with H 2O 2 of 25% COD Cr, in , while in UV/H 2O 2 system only 16 8% 2 chlorophenol was removed after one hour treatment. The optimal pH in this reaction occurred between pH 3 0 and pH 4.0. The reaction kinetics for photo assisted Fenton process experimented in this research was investigated. Kinetic models were proposed for the treatment of 2 chlorophenol wastewater. The reaction was found to follow the 2nd order. The equations of reaction kinetics are as follows:-d[RH]d t = K RH [RH][H 2O 2] 0exp (-K H 2O 2 t );-d[COD Cr ]d t = K COD Cr [COD Cr ][H 2O 2] 0exp(-K′ t ). The prediction of the models was found to be in a good agreement with experimental results, thus confirming the proposed reaction mechanism.
基金Project(11JJ2031) supported by the Natural Science Fund of Hunan Province,China
文摘Fenton oxidation was used as the pretreatment of 2-chlorophenol wastewater with the objective of dechlorination, as it was considered that after breakage of aryl—Cl bond, the generated intermediates may be easily biodegraded. Hence, the optimization of pH and the low Fenton reagent doses for dechlorination was investigated. More than 99% dechlorination is obtained at the optimal pH 4 and the Fenton reagent doses of 86 mmol/L H2 O2 and 2.87 mmol/L Fe2+. The corresponding 2-chlorophenol is degraded completely, 80.02% COD is also removed, and the biodegradability, evaluated in terms of the BOD5 /COD ratio, is increased up to 0.41. To test the effect of this pretreatment, the pretreated 2-chlorophenol wastewater was fed to a sequencing batch reactor(SBR). The results show that complete mineralization is achieved. It is demonstrated that, for the treatment of recalcitrant compounds like 2-chlorophenol, the Fenton pretreatment could be quite effective and economical for enhancing the biodegradability in a Fenton-biological coupled system.
基金China Scholarship Council(No.97842039)National Natural Science Foundation of China(No.20107005)
文摘A microscopic diffusion-reaction modei was developed to simulate in-situ ozonation for the remediation of contaminated soil, i.e., to predict the temporal and spatial distribution of target contaminant in the subsurface. The sequential strategy was employed to obtain the numerical solution of the modei using finite difference method. A non-uniform grid of discretization points was emploved to increase the accuracy of the numerical solution by means of coordinate transformation. One-dimensional column tests were conducted to verify the modei. The column was packed with simulated soils that were spiked with 2-chlorophenol. Ozone gas passed through the column at a flow rate of 100ml·min-1. The residual 2-chlorophenol content at different depths of the column was determined at fixed time intervals. Compared the experimental data with the simulated values, it was found that the mathematical modei fitted data well during most time of the experiment.
基金sponsored by the Natural Science Foundation for Distinguished Young Scholars of Guangdong Provence (2019B151502038)the National Natural Science Foundation of China (21706038, 21808042, 21808039)+2 种基金the Fundamental Research Funds for the Central Universities (300102299202)the National Training Projects of the University Students’ Innovation and Entrepreneurship program (201910710125)the Scientific Innovation Practice Project of Postgraduates of Chang’an University (300103703058, 300103703016)
文摘In this paper,the aqueous two-phase systems(ATPS)containing n-ethylpyridinium tetrafluoroborate([EPy]BF_(4)),sodium-based salts,and water were studied and the extraction efficiency of 2-chlorophenol was measured to study the ATPS performance in extracting phenolic compounds.The binodal curves of[EPy]BF_(4)+sodium carbonate(Na_(2)CO_(3))ATPS and[EPy]BF_(4)+sodium dihydrogen phosphate(NaH_(2)PO_(4))ATPS have been determined at 308.15 K,318.15 K,and 328.15 K and atmospheric pressure.After getting good correlation with Merchuk equation,the binodal curves together with gravimetric method were used to calculate the tie-lines data.Furthermore,the reliability of tie-lines data was verified using Othmer-Tobias and Bancroft equations.Then,the salt influence and temperature influence on the phase behavior were discussed and the results show the salt-outing ability of Na_(2)CO_(3) is better than NaH_(2)PO_(4).With the aim of studying the ATPS performance in extracting phenolic compounds,extraction efficiency for 2-chlorophenol at different temperatures were studied and the results show that[EPy]BF_(4)+Na_(2)CO_(3) ATPS is preferred than[EPy]BF_(4)+NaH_(2)PO_(4) ATPS in applications.
文摘The reaction mechanism of 3 chlorophenol with OH, H in aqueous solution was studied by transient technology. The 3 chlorophenol aqueous solutions have been saturated with air or N 2 previously. Under alkaline condition, the reaction of OH radical with 3 chlorophenol produces 3 chlorinated phenoxyl radical, with the absorption peaks at 400 nm and 417 nm. Under neutral condition, the reaction of OH radical with 3 chlorophenol produces OH adduct with the maximal absorption at about 340 nm. And in acid solution, the reaction of H with 3 chlorophenol produces H adduct with the maximal absorption at about 320 nm. 3 chlorophenol is compared with 4 and 2 chlorophenols from the free radical pathways. The results show that the positions of chlorine on the aromatic ring strongly influence the dehalogenation and degradation process.
基金supported by the Chinese Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of China (Grant No. 2007KJ006)
文摘In order to address the complex cometabolic degradation of toxic compounds, batch experiments on the biodegradation of 2-chlorophenol (2-CP) and phenol by Pseudomonas putida were carried out. The experimental results show that 2-CP has an inhibitory effect on cell growth and phenol degradation, which demonstrates that the interaction between substrates affects cell growth and substrate degradation. A kinetic model of cell growth and substrate transformation was also developed. The square of the correlation coefficient from the experiment was 0.97, indicating that this model properly simulates the cometabolic degradation of 2-CP and phenol.
文摘Ultrasound assisted electrocatalytic process was used for enhancing decomposition efficiency of organic compounds. In this paper, the effect of ultrasonic frequency, ultrasonic intensity and pH value on 3-chlorophenol decomposition were studied. It was found that 3-chlorophenol in aqueous solution can be markedly decomposed by ultrasound assisted electrocatalytic process. The rate of decomposition increased with the increase of frequency, and low frequency is proper in the ultrasound assisted electrocatalytic system. The removal of 3-chlorophenol increased visibly with the increase of ultrasonic intensity until the intensity of 1.56 W/cm2. Alkaline condition is beneficial to 3-chlorophenol decomposition, the rate at pH 9.08 was higher than pH 2.48 and 6.85. The major intermediate formed during 3-chlorophenol decomposition was 2-chloro-pbenzoquinone, which was readily decomposed by ultrasound assisted electrocatalytic process.
基金the General Project of Science and Teclmology Plan of Beijing Municipal Education Commission,China (Nos.SQKM201410017004,KM201710017001 )the Natural Science Foundation of Beij ing Municipality,China(No.2174072)+1 种基金the Outstanding Talents Training Program of Beijing Manicipality,China(No.2016000020124G060)the Municipal Undergraduates Research Training Program of Beijing Municipality,China(Nos.2016J00037,2017J00138).
文摘Chlorophenols are known as persistent organic pollutants.Therefore,research on the removal of chlorophenols has attracted widespread attention.Hereto,the photocatalytic degradation of 4-chlorophenol by Gd-doped β-Bi2O3 under visible light irradiation was studied.The results showed that Gd-doped β-Bi2O3 materials are efficient catalysts for the photocatalytic degradation of chlorophenols,and 2%(atomic traction)Gd-doped β-Bi2O3 exhibits the highest photocatalytic activity for 4-chlorophenol degradation,because doping an appropriate amount of Gd^3+ions can effectively reduce the recombination rate of the photogenerated e^-/h^+pairs and then enhance the photocatalytic performance.When the reaction was carried out at 25 ℃ for 6 h using the 2% Gd-doped/β-Bi2O3 micro/nano materials of 200 mg and at air flow rate of 40 mL/min,the degradation rate of 4-chlorophenol reached 92.3%.Additionally based on the analysis of the products,it was speculated that the dominant photocatalytic degradation mechanism of 4-chlorophenol by Gd-doped β-Bi2O3 under visible light irradiation is an oxidative process involving an attack by the hydroxyl radical.
基金Funded by the National Natural Science Foundation of China(No.61377092)
文摘A fiber optic 2-cholrophenol(2-CP) sensor was developed based on the fluorescence quenching of molecular oxygen on the oxygen-sensitive membrane and O2 consumption during catalytic oxidation reaction of 2-CP. The 2-CP concentration can be determined by utilizing a lock-in amplifier to measure the change in the fluorescence lifetime of an oxygen-sensitive membrane, in which the tris(2,2′-bipyridyl) ruthenium(II) chloride complexes(Ru(II)(byp)3Cl2) were immobilized in cellulose acetate(CA) via simple hybridized approach. The experimental results show the good linear relationship between the phase delay of sensitive membrane and 2-CP concentration in its detection range of 1×10-7 to 1×10-5 mol/L and 1×10-5 to 1×10-4 mol/L. The detection limit of the sensor is 7×10-8 mol/L(S/N=3) and the response time is 5 min. Our experimental measurements confirmed good response characteristics of the as-prepared fiber optic 2-CP sensor, as well as its capability to detect the 2-CP concentration in practical water samples.
文摘A series of phosphorus-modified titanium dioxide samples with varying P/Ti atomic ratio were conveniently prepared via a conventional solgel route. The effects of phosphorus content and calcination temperature on the crystalline structure, grain growth, surface area, and the photocatalytic activity of P-modified TiO2 were investigated. The XRD results showed that P species slow down the particle growth of anatase and increase the anatase-to-rutile phase transformation temperature to more than 900°C. Kinetic studies on the P-modified TiO2 to degraded 4-chlorophenol had found that the TP5500 prepared by adopting a P/Ti atomic ratio equal to 0.05 and calcined at 500°C had an apparent rate constant equal to 0.0075 min 1, which is superior to the performance of a commercial photocatalyst Degussa P25 Kapp = 0.0045 min 1 and of unmodified TiO2 (TP0500) Kapp = 0.0022 min 1. From HPLC analyses, various hydroxylated intermediates formed during oxidation had been identified, including hydroquinone (HQ), benzoquinone (BQ) and (4CC) 4-chlorocatechol as main products. Phytotoxicity was assessed before and after irradiation against seed germination of tomato (Lycopersicon esculentum) whereas acute toxicity was assessed by using Folsomia candida as the test organism. Intermediates products were all less toxic than 4-chlorophenol and a significant removal of the overall toxicity was accomplished
基金国家自然科学基金,the Knowledge Creation Engineering as one of the important directional projects from the Foundation of the Chinese Academy of Sciences,the 'Tenth Five-Year Key Tackle Plan' from the Ministry of Science and Technology of China
文摘The synergic effect mechanism of photo-electrochemical oxidation is investigated in detail through reaction products and kinetics analysis in a photo-electric integral reactor with 2-chlorophenol (2-CP) as the model pollutant. A kinetics model is constructed for the combinatorial photo-electrochemical (CPE) degradation. A remarkable synergetic effect, which can significantly enhance the mineralization rate of the CPE process, is verified by the comparison of apparent kinetic constants. In the CPE process, complemental effects with multi-level and multi-pathway for pollutants degradation under our experimental conditions are speculated. It is proved that the degradation pathways are not only the simple summation of that of photolysis and electrolysis, but the formation of synergic effect through combination of several new acting approaches. The degradation efficiency is enhanced considerably by three factors, control of electrode poisoning by the UV irradiation, control of excitation and reaction trend of pollutants molecules by the UV irradiation, and control of activation effect and transfer trend by the oriented direct current (DC) electric field. An advanced oxidation system is set up through manifold of free radicals chain reactions in the CPE reactions, so that the aqueous organics can be mineralized fast and completely. It is proven by the kinetics analysis that the mineralization of organic pollutants is mainly attributed to the generation of very active hydroxyl radicals (OH@) in bulk solution from the CPE synergetic effect.
基金Science and Technology Department of Zhejiang Province(Grant No.2005C23056)
文摘A coupled ultrasound/electrocatalysis(US/EC) process was used to enhance the decomposition effi-ciency of organics.The synergetic kinetics and the mechanism of 2-chlorophenol(2-CP) decomposi-tion with coupled US/EC were studied.It was found that in a US/EC process 2-CP is attacked by active radicals(such as hydroxyl radicals) to form 2-chloro-p-benzoquinone,and the latter is oxidized to simple organic acids when the ring is opened.The enhancement factor expressed by the apparent rate constant of 2-CP decomposition with coupled US/EC is 1.324 at a current density of 20 mA·cm-2,an ultrasonic frequency of 20 kHz,an ultrasonic intensity of 0.27 W·cm-2,and a 2-CP initial concentration of 200 mg·L-1,which means that a synergetic effect exists.A model derived from Langmuir adsorption theory of solid surface and reaction kinetics equations can describe exactly the decomposition of 2-CP with coupled US/EC.The numerical values are in good agreement with the experimental data.The model parameters are associated with reaction conditions.
基金Project supported jointly by the Foundation of He'nan Educational Committee(15A150071)
文摘Ce-TiO2/CA(carbon aerogel) electrode was prepared by sol impregnation approach. The XRD(X-ray diffraction) and Raman spectra reveal that the TiO2 is anatase. The UV-vis diffuse reflectance spectra show that the optical absorption edge for Ce-TiO_2/CA is red-shifted to 535 nm compared with TiO_2/CA. Under visible light irradiation, the photocurrent density increment on Ce-TiO_2/CA is 75 times that on Ce-TiO_2/FTO(fluorine-doped tin oxide). The electrochemical impedance spectroscopy reveals that the conductivity of CeTiO_2/CA is much better than the Ce-TiO_2/FTO. Furthermore, the Ce-TiO_2/CA can be used to the highest electrosorptive photodegradation for 4-chlorophenol wastewater degradation, which is ascribed predominantly to the efficient reduction of electron-hole pair recombination in the photocatalysts.
基金This work was supported by the Chinese Postdoc Fund and the National Natural Science Foundation of China (Grant No. 50325824).
文摘The degradation of 4-chlorophenol (4-CP) by using gamma rays generated by a 60Co source in the presence of O3 was investigated. The radiolysis of 4-CP and the kinetics of 4-CP min-eralization were analyzed based on the determination of total organic carbon (TOC). The influence of initial 4-CP concentration and the free radicals scavengers (such as NaHCO3 and t-butanol) on the 4-CP degradation was also studied. The results showed that when the radiation rate was 336 Gy·min?1, 4-chlorophenol at concentration of 10 mg·L?1 could be completely degraded at the radiation dose of 2 kGy. The degradation of 4-chlorophenol could be described by a first-order reaction model, the rate constant of 4-CP degradation by combined ozonation and radiation was 0.1016 min?1, which was 2.4 times higher than the sum of radiation (0.0294 min?1) and ozonation (0.0137 min?1). It re-vealed that the combination of radiation and ozonation resulted in synergistic effect, which can re-markably increase the degradation efficiency of 4-CP.
文摘The photocatalytic degradation of phenol and 4-chlorophenol (4-CP) in aqueous suspensions with the use of titanium dioxide (TiO2 ) under UV irradiation was examined. The effects of different supporting materials mixed physically with TiO2 were studied to achieve maximum degradation efficiency. Among the three supports, namely activated carbon (AC), silica (SiO2 ) and zeolite (ZSM-5), all exhibited paramount efficiency for degradation of phenol and 4-CP and was better than TiO2 alone. The optimum concentration was found to be 50 mg for all supporting materials. The efficiency order of the three supports was as follows: AC 〉 ZSM-5 〉 SiO2 , respectively. Whilst, the degradation of phenol and 4-CP was improved from 70.6% to 87.6% and 80.6% to 89.7%, respectively, within 120 min photocatalysis in the presence of optimal amount of AC. The degradation was also comparatively enhanced in the presence of cheaper rice husk and the activity was closed to ZSM-5 and lower than AC.