期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
双线性扩张范畴
1
作者 陈娟 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第5期600-602,共3页
双线性扩张范畴C=A[M,N,φ,ψ]B的模范畴C Mod是双扩张代数的自然推广,且等价于四元组范畴C T.作为应用,给出了2-循环复形范畴与特殊的双扩张范畴等价的证明,以及由范畴A或B中的某些AR-序列可得C T中的部分AR序列.
关键词 k-线性范畴 双扩张范畴 2-循环复形范畴 AR序列
下载PDF
Cluster Structures in 2-Calabi-Yau Triangulated Categories of Dynkin Type with Maximal Rigid Objects
2
作者 Hui Min CHANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2017年第12期1693-1704,共12页
In this paper, we consider two kinds of 2-Calabi-Yau triangulated categories with finitely many indecomposable objects up to isomorphisms, called An,t =D^b(KA(2t+1)(n+1)-3)/τ^t(n+1)-1[1], where n,t ≥ 1, a... In this paper, we consider two kinds of 2-Calabi-Yau triangulated categories with finitely many indecomposable objects up to isomorphisms, called An,t =D^b(KA(2t+1)(n+1)-3)/τ^t(n+1)-1[1], where n,t ≥ 1, and Dn,t = Db(KD2t(n+1))/τ^(n+1)φ^n, where n,t ≥ 1, and φ is induced by an automorphism of D2t(n+1) of order 2. Except the categories An,1, they all contain non-zero maximal rigid objects which are not cluster tilting. An,1 contain cluster tilting objects. We define the cluster complex of An,t (resp. Dn,t) by using the geometric description of cluster categories of type A (resp. type D). We show that there is an isomorphism from the cluster complex of An,t (resp. Dn,t) to the cluster complex of root system of type Bn. In particular, the maximal rigid objects are isomorphic to clusters. This yields a result proved recently by Buan-Palu-Reiten: Let RAn,t, resp. RDn,t, be the full subcategory of An,t, resp. Dn,t, generated by the rigid objects. Then RAn,t≈RAn,1 and TDn,t≈TAn,1 as additive categories, for all t 〉 1. 展开更多
关键词 2-Calabi-Yau triangulated category cluster structure cluster complex
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部