Background:The threat of avian influenza a subtype avian influenza A(H9N2)virus remains a significant concern,necessitating the exploration of novel antiviral agents.This study employs network pharmacology and computa...Background:The threat of avian influenza a subtype avian influenza A(H9N2)virus remains a significant concern,necessitating the exploration of novel antiviral agents.This study employs network pharmacology and computational analysis to investigate the potential of kuwanons,a natural compounds against H9N2 influenza virus.Methods:Leveraging comprehensive databases and bioinformatics tools,we elucidate the molecular mechanisms underlying Kuwanons pharmacological effects against H9N2 influenza virus.Network pharmacology identifies H9N2 influenza virus targets and compounds through integrated protein-protein interaction and Kyoto Encyclopedia of Genes and Genomes analyses.Molecular docking studies were performed to assess the binding affinities and structural interactions of Kuwanon analogues with key targets,shedding light on their potential inhibitory effects on viral replication and entry.Results:Compound-target network analysis revealed complex interactions(120 nodes,163 edges),with significant interactions and an average node degree of 2.72.Kyoto Encyclopedia of Genes and Genomes analysis revealed pathways such as Influenza A,Cytokine-cytokine receptor interaction pathway in H9N2 influenza virus.Molecular docking studies revealed that the binding free energy for the docked ligands ranged between-5.2 and-9.4 kcal/mol for the human interferon-beta crystal structure(IFNB1,Protein Data Bank:1AU1)and-5.4 and-9.6 kcal/mol for Interleukin-6(IL-6,PDB:4CNI).Conclusion:Our findings suggest that kuwanon exhibits promising antiviral activity against H9N2 influenza virus by targeting specific viral proteins,highlighting its potential as a natural therapeutic agent in combating avian influenza infections.展开更多
Porous intermetallics show potential in the field of filtration and separation as well as in the field of catalysis.Herein,porous Ti Fe2intermetallics were fabricated by the reactive synthesis of elemental powders.The...Porous intermetallics show potential in the field of filtration and separation as well as in the field of catalysis.Herein,porous Ti Fe2intermetallics were fabricated by the reactive synthesis of elemental powders.The phase transformation and pore formation of porous TiFe2intermetallics were investigated,and its corrosion behavior and hydrogen evolution reaction(HER)performance in alkali solution were studied.Porous TiFe2intermetallics with porosity in the range of 34.4%-56.4%were synthesized by the diffusion reaction of Ti and Fe elements,and the pore formation of porous TiFe2intermetallic compound is the result of a combination of the bridging effect and the Kirkendall effect.The porous TiFe2samples exhibit better corrosion resistance compared with porous 316L stainless steel,which is related to the formation of uniform nanosheets on the surface that hinder further corrosion,and porous TiFe2electrode shows the overpotential of 220.6 and 295.6 mV at 10 and 100 mA·cm-2,suggesting a good catalytic performance.The synthesized porous Fe-based intermetallic has a controllable pore structure as well as excellent corrosion resistance,showing its potential in the field of filtration and separation.展开更多
Si is considered as the promising anode materials for lithium-ion batteries(LIBs)owing to their high capacities of 4200 mAh g-1and natural abundancy.However,severe electrode pulverization and poor electronic and Li-io...Si is considered as the promising anode materials for lithium-ion batteries(LIBs)owing to their high capacities of 4200 mAh g-1and natural abundancy.However,severe electrode pulverization and poor electronic and Li-ionic conductivities hinder their practical applications.To resolve the afore-mentioned problems,we first demonstrate a cation-mixed disordered lattice and unique Li storage mechanism of single-phase ternary GaSiP_(2)compound,where the liquid metallic Ga and highly reactive P are incorporated into Si through a ball milling method.As confirmed by experimental and theoretical analyses,the introduced Ga and P enables to achieve the stronger resistance against volume variation and metallic conductivity,respectively,while the cation-mixed lattice provides the faster Li-ionic diffusion capability than those of the parent GaP and Si phases.The resulting GaSiP_(2)electrodes delivered the high specific capacity of 1615 mAh g-1and high initial Coulombic efficiency of 91%,while the graphite-modified GaSiP_(2)(GaSiP_(2)@C)achieved 83%of capacity retention after 900 cycles and high-rate capacity of 800 at 10,000 mA g-1.Furthermore,the LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)//Ga SiP_(2)@C full cells achieved the high specific capacity of 1049 mAh g-1after 100 cycles,paving a way for the rational design of high-performance LIB anode materials.展开更多
This novel study identifi es the effective anti-inflammatory phenolic compounds in dandelion and provides mechanistic insights into their interactions with receptor proteins(toll-like receptor 4,TLR4;co-receptor myelo...This novel study identifi es the effective anti-inflammatory phenolic compounds in dandelion and provides mechanistic insights into their interactions with receptor proteins(toll-like receptor 4,TLR4;co-receptor myeloid differentiation protein-2,MD-2)using UHPLC-ESI-MS/MS,lipopolysaccharide(LPS)-stimulated THP-1 cell line,fluorescence quenching and anisotropy,molecular docking(single ligand and multi-ligand docking)and molecular dynamics simulation.A 50%aqueous methanol extract had a greater anti-inflammatory effect and higher chicoric acid content,compared with the 100%water and 100%methanol extracts.Chicoric acid,chlorogenic acid,methylophiopogonone A,caffeic acid,gallic acid monohydrate and 4’-O-demethylbroussonin A had relatively high binding energies and contents in all extracts.Chicoric acid competed with chlorogenic acid,4’-O-demethylbroussonin A and quercetin for MD-2.Among dandelion’s phenolics,chicoric acid most effectively hindered TLR4-MD-2 complex formation,with a quenching constant of 0.62×10^(6) L/mol for MD-2 or TLR4 at 320 K,and binding energies of-6.87 and-5.97 kcal/mol,respectively,for MD-2 and TLR4.展开更多
Acid-catalyzed dehydration of alcohols has been widely employed for the synthesis of alkenes. However, activated alcohols when employed as substrates in dehydration reactions are often pla-gued by the lack of alkene s...Acid-catalyzed dehydration of alcohols has been widely employed for the synthesis of alkenes. However, activated alcohols when employed as substrates in dehydration reactions are often pla-gued by the lack of alkene selectivity. In this work, the reaction system can be significantly improved through enhancing the performance of Lewis acid catalysts in the dehydration of activated alcohols by combining with a Lewis base. Observations of the reaction mechanism revealed that the Lewis base component might have changed the reaction rate order. Although both the principal and side reaction rates decreased, the effect was markedly more observed on the latter reaction. Therefore, the selectivity of the dehydration reaction was improved. On the basis of this observation, a new route to synthesize 2-cinnamyl-1,3-dicarbonyl compounds was developed by using 2-aryl-3,4- di-hydropyran as a starting substrate in the presence of a Lewis acid/Lewis base combined catalyst system.展开更多
A simple and efficient method for the iodination of aromatic compounds has been achieved in the presence of iodine and 1,4- bis(triphenylphosphonium)-2-butene peroxodisulfate.
Photodegradation ofpentachlorophenol (PCP) and p-nitrophenol (PNP) in soil was carried out in a designed rotary reactor, which can provide the soil particles with continually uniform irradiation, and on a series o...Photodegradation ofpentachlorophenol (PCP) and p-nitrophenol (PNP) in soil was carried out in a designed rotary reactor, which can provide the soil particles with continually uniform irradiation, and on a series of thin soil layers. TiO2, as a kind of environmental friendly photocatalyst, was introduced to the soil to enhance the processes. Compared with that on the soil layers, photodegradation of PCP at initial concentration of 60 mg/kg was improved dramatically in the rotary reactor no matter whether TiO2 was added, with an increase of 3.0 times in the apparent first-order rate constants. The addition of 1 wt% TiO2 furthered the improvement by 1.4 times. Without addition of TiO2, PNP (initial concentration of 60 mg/kg) photodegradation rate in the rotary reactor was similar to that on the soil layers. When 1 wt% additional TiO2 was added, PNP photodegradation was enhanced obviously, and the enhancement in the rotary reactor was 2 times of that on the soil layers, which may be attributed to the higher frequency of the contact between PNP on soil particles and the photocatalyst. The effect of soil pH and initial concentrations of the target compounds on the photodegradation in the rotary reactor was investigated. The order of the degradation rate at different soil pH was relative to the aggregation of soil particles during mixing in the rotary reactor. Photodegradation of PCP and PNP at different initial concentrations showed that addition of TiO2 to enhance the photodegradation was more suitable for contaminated soil with higher concentration of PCP, while was effective for contaminated soil at each PNP concentration tested in our study.展开更多
An activated carbon pore-expanding technique was achieved through innovative reactivation by CO_2/microwave.The original and modified activated carbons were characterized by nitrogen adsorption–desorption,scanning el...An activated carbon pore-expanding technique was achieved through innovative reactivation by CO_2/microwave.The original and modified activated carbons were characterized by nitrogen adsorption–desorption,scanning electron microscopy,transmission electron microcopy,and Fourier transform infrared spectroscopy.The mesopore volume increased from 0.122 cm^3·g^(-1) to 0.270 cm^3·g^(-1),and a hierarchical pore structure was formed.A gradual decrease in the phenolic hydroxyl and carboxyl groups on the surface of activated carbon enhanced the surface inertia of granular activated carbon(GAC).The toluene desorption rate of the modified sample increased by 8.81% compared with that of the original GAC.Adsorption isotherm fittings revealed that the Langmuir model was applicable for the original and modified activated carbons.The isosteric adsorption heat of toluene on the activated carbon decreased by approximately 50%,which endowed the modified sample with excellent stability in application.The modified samples showed an enhanced desorption performance of toluene,thereby opening a way to extend the cycle life and improve the economic performance of carbon adsorbent in practical engineering applications.展开更多
Two Pb^Ⅱ coordination polymers [Pb(oba)(2,2′-bipy)]·1.5H2O(1) and [Pb(oba)(phen)](2)(H2oba = 2,4-oxybis(benzoic acid), 2,2′-bipy = 2,2′-bipyridine, phen = 1,10-phenanthroline) were synthesized...Two Pb^Ⅱ coordination polymers [Pb(oba)(2,2′-bipy)]·1.5H2O(1) and [Pb(oba)(phen)](2)(H2oba = 2,4-oxybis(benzoic acid), 2,2′-bipy = 2,2′-bipyridine, phen = 1,10-phenanthroline) were synthesized by hydrothermal reactions and characterized by single-crystal X-ray diffraction, thermogravimetric analyses, IR spectroscopy and elemental analysis. Structures of compounds 1 and 2 are similar. Compounds 1 and 2 show 1D wavy chains, which are further connected through aromatic π-π stacking interactions to expand into 2D wavelike networks. The crystal structure of 2,4-oxybis(benzoic acid) ligand(3) was obtained, and its full geometry optimization was carried out by using DFT methods at the B3LYP/6-31G(d) level. The calculated data show that the bond distances and bond angles were very close to the experimental data. The values of the frontier orbital energies indicate that this configuration is stable. Moreover, the solid-state fluorescence properties of 1-3 have also been investigated.展开更多
The compound ingots of Pr0.15TbxDy0.85-xFe2 (x=0 to 0.85) were prepared by arc melting in a water Cu boat using arc furnace under a purified Ar atmosphere. Appropriate annealing (850℃, 100 h) can obtain single Laves ...The compound ingots of Pr0.15TbxDy0.85-xFe2 (x=0 to 0.85) were prepared by arc melting in a water Cu boat using arc furnace under a purified Ar atmosphere. Appropriate annealing (850℃, 100 h) can obtain single Laves phase compound. The magnetostriction for these systems will rise obviously when partially substituted Tb or Dy by Pr.展开更多
Michael addition of nitroalkanes to α,β-unsaturated carbonyl compounds occurs in the presence of KF/AI_2O_3/PEG4000 without solvent.Yields are fair to good and work-ups are easy.
文摘Background:The threat of avian influenza a subtype avian influenza A(H9N2)virus remains a significant concern,necessitating the exploration of novel antiviral agents.This study employs network pharmacology and computational analysis to investigate the potential of kuwanons,a natural compounds against H9N2 influenza virus.Methods:Leveraging comprehensive databases and bioinformatics tools,we elucidate the molecular mechanisms underlying Kuwanons pharmacological effects against H9N2 influenza virus.Network pharmacology identifies H9N2 influenza virus targets and compounds through integrated protein-protein interaction and Kyoto Encyclopedia of Genes and Genomes analyses.Molecular docking studies were performed to assess the binding affinities and structural interactions of Kuwanon analogues with key targets,shedding light on their potential inhibitory effects on viral replication and entry.Results:Compound-target network analysis revealed complex interactions(120 nodes,163 edges),with significant interactions and an average node degree of 2.72.Kyoto Encyclopedia of Genes and Genomes analysis revealed pathways such as Influenza A,Cytokine-cytokine receptor interaction pathway in H9N2 influenza virus.Molecular docking studies revealed that the binding free energy for the docked ligands ranged between-5.2 and-9.4 kcal/mol for the human interferon-beta crystal structure(IFNB1,Protein Data Bank:1AU1)and-5.4 and-9.6 kcal/mol for Interleukin-6(IL-6,PDB:4CNI).Conclusion:Our findings suggest that kuwanon exhibits promising antiviral activity against H9N2 influenza virus by targeting specific viral proteins,highlighting its potential as a natural therapeutic agent in combating avian influenza infections.
基金financially supported by the National Natural Science Foundation of China(No.51971251)。
文摘Porous intermetallics show potential in the field of filtration and separation as well as in the field of catalysis.Herein,porous Ti Fe2intermetallics were fabricated by the reactive synthesis of elemental powders.The phase transformation and pore formation of porous TiFe2intermetallics were investigated,and its corrosion behavior and hydrogen evolution reaction(HER)performance in alkali solution were studied.Porous TiFe2intermetallics with porosity in the range of 34.4%-56.4%were synthesized by the diffusion reaction of Ti and Fe elements,and the pore formation of porous TiFe2intermetallic compound is the result of a combination of the bridging effect and the Kirkendall effect.The porous TiFe2samples exhibit better corrosion resistance compared with porous 316L stainless steel,which is related to the formation of uniform nanosheets on the surface that hinder further corrosion,and porous TiFe2electrode shows the overpotential of 220.6 and 295.6 mV at 10 and 100 mA·cm-2,suggesting a good catalytic performance.The synthesized porous Fe-based intermetallic has a controllable pore structure as well as excellent corrosion resistance,showing its potential in the field of filtration and separation.
基金supported by National Natural Science Foundation of China(No.22178068)the Brain Pool(BP)program(No.2021H1D3A2A02045576)funded by National Research Foundation of KoreaNational Research Foundation of Korea grant funded by the Korea government(MSIT)(No.NRF-2020R1A3B2079803 and No.2021M3D1A2043791)。
文摘Si is considered as the promising anode materials for lithium-ion batteries(LIBs)owing to their high capacities of 4200 mAh g-1and natural abundancy.However,severe electrode pulverization and poor electronic and Li-ionic conductivities hinder their practical applications.To resolve the afore-mentioned problems,we first demonstrate a cation-mixed disordered lattice and unique Li storage mechanism of single-phase ternary GaSiP_(2)compound,where the liquid metallic Ga and highly reactive P are incorporated into Si through a ball milling method.As confirmed by experimental and theoretical analyses,the introduced Ga and P enables to achieve the stronger resistance against volume variation and metallic conductivity,respectively,while the cation-mixed lattice provides the faster Li-ionic diffusion capability than those of the parent GaP and Si phases.The resulting GaSiP_(2)electrodes delivered the high specific capacity of 1615 mAh g-1and high initial Coulombic efficiency of 91%,while the graphite-modified GaSiP_(2)(GaSiP_(2)@C)achieved 83%of capacity retention after 900 cycles and high-rate capacity of 800 at 10,000 mA g-1.Furthermore,the LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)//Ga SiP_(2)@C full cells achieved the high specific capacity of 1049 mAh g-1after 100 cycles,paving a way for the rational design of high-performance LIB anode materials.
基金supported by the funding“Innovation Project of Shandong Province Agricultural Application Technology”(2130106)“Key Technology Research and Development Program of Shandong”(2019GNC106004).
文摘This novel study identifi es the effective anti-inflammatory phenolic compounds in dandelion and provides mechanistic insights into their interactions with receptor proteins(toll-like receptor 4,TLR4;co-receptor myeloid differentiation protein-2,MD-2)using UHPLC-ESI-MS/MS,lipopolysaccharide(LPS)-stimulated THP-1 cell line,fluorescence quenching and anisotropy,molecular docking(single ligand and multi-ligand docking)and molecular dynamics simulation.A 50%aqueous methanol extract had a greater anti-inflammatory effect and higher chicoric acid content,compared with the 100%water and 100%methanol extracts.Chicoric acid,chlorogenic acid,methylophiopogonone A,caffeic acid,gallic acid monohydrate and 4’-O-demethylbroussonin A had relatively high binding energies and contents in all extracts.Chicoric acid competed with chlorogenic acid,4’-O-demethylbroussonin A and quercetin for MD-2.Among dandelion’s phenolics,chicoric acid most effectively hindered TLR4-MD-2 complex formation,with a quenching constant of 0.62×10^(6) L/mol for MD-2 or TLR4 at 320 K,and binding energies of-6.87 and-5.97 kcal/mol,respectively,for MD-2 and TLR4.
基金supported by the National Natural Science Foundation of China (21173089 and 21373093)the Fundamental Research Funds for the Central Universities of China (2014ZZGH019)the Cooperative Innovation Center of Hubei Province
文摘Acid-catalyzed dehydration of alcohols has been widely employed for the synthesis of alkenes. However, activated alcohols when employed as substrates in dehydration reactions are often pla-gued by the lack of alkene selectivity. In this work, the reaction system can be significantly improved through enhancing the performance of Lewis acid catalysts in the dehydration of activated alcohols by combining with a Lewis base. Observations of the reaction mechanism revealed that the Lewis base component might have changed the reaction rate order. Although both the principal and side reaction rates decreased, the effect was markedly more observed on the latter reaction. Therefore, the selectivity of the dehydration reaction was improved. On the basis of this observation, a new route to synthesize 2-cinnamyl-1,3-dicarbonyl compounds was developed by using 2-aryl-3,4- di-hydropyran as a starting substrate in the presence of a Lewis acid/Lewis base combined catalyst system.
文摘A simple and efficient method for the iodination of aromatic compounds has been achieved in the presence of iodine and 1,4- bis(triphenylphosphonium)-2-butene peroxodisulfate.
基金The National Basic Research Program of China (No. 2004CB418504 2003CB415006)
文摘Photodegradation ofpentachlorophenol (PCP) and p-nitrophenol (PNP) in soil was carried out in a designed rotary reactor, which can provide the soil particles with continually uniform irradiation, and on a series of thin soil layers. TiO2, as a kind of environmental friendly photocatalyst, was introduced to the soil to enhance the processes. Compared with that on the soil layers, photodegradation of PCP at initial concentration of 60 mg/kg was improved dramatically in the rotary reactor no matter whether TiO2 was added, with an increase of 3.0 times in the apparent first-order rate constants. The addition of 1 wt% TiO2 furthered the improvement by 1.4 times. Without addition of TiO2, PNP (initial concentration of 60 mg/kg) photodegradation rate in the rotary reactor was similar to that on the soil layers. When 1 wt% additional TiO2 was added, PNP photodegradation was enhanced obviously, and the enhancement in the rotary reactor was 2 times of that on the soil layers, which may be attributed to the higher frequency of the contact between PNP on soil particles and the photocatalyst. The effect of soil pH and initial concentrations of the target compounds on the photodegradation in the rotary reactor was investigated. The order of the degradation rate at different soil pH was relative to the aggregation of soil particles during mixing in the rotary reactor. Photodegradation of PCP and PNP at different initial concentrations showed that addition of TiO2 to enhance the photodegradation was more suitable for contaminated soil with higher concentration of PCP, while was effective for contaminated soil at each PNP concentration tested in our study.
基金Supported by the National Natural Science Foundation of China(21506194,21676255)the Natural Science Foundation of Zhejiang Province(Y16B070025)the Commission of Science and Technology of Zhejiang Province(2013C03021,2017C33106)
文摘An activated carbon pore-expanding technique was achieved through innovative reactivation by CO_2/microwave.The original and modified activated carbons were characterized by nitrogen adsorption–desorption,scanning electron microscopy,transmission electron microcopy,and Fourier transform infrared spectroscopy.The mesopore volume increased from 0.122 cm^3·g^(-1) to 0.270 cm^3·g^(-1),and a hierarchical pore structure was formed.A gradual decrease in the phenolic hydroxyl and carboxyl groups on the surface of activated carbon enhanced the surface inertia of granular activated carbon(GAC).The toluene desorption rate of the modified sample increased by 8.81% compared with that of the original GAC.Adsorption isotherm fittings revealed that the Langmuir model was applicable for the original and modified activated carbons.The isosteric adsorption heat of toluene on the activated carbon decreased by approximately 50%,which endowed the modified sample with excellent stability in application.The modified samples showed an enhanced desorption performance of toluene,thereby opening a way to extend the cycle life and improve the economic performance of carbon adsorbent in practical engineering applications.
基金supported by the Natural Scientific Research and Overall innovation plan major project of Shaanxi Provincial Education Office of China(No.2012KTCL03-16)the National Natural Science Foundation of China(No.21373178)+2 种基金the Natural Scientific Research Foundation of Shaanxi Provincial Education Office(No.2013Jk0668)the National College Students'innovation and entrepreneurship training program(201310719002)the special fund of Yan’an University(No.YDZ2013-10)
文摘Two Pb^Ⅱ coordination polymers [Pb(oba)(2,2′-bipy)]·1.5H2O(1) and [Pb(oba)(phen)](2)(H2oba = 2,4-oxybis(benzoic acid), 2,2′-bipy = 2,2′-bipyridine, phen = 1,10-phenanthroline) were synthesized by hydrothermal reactions and characterized by single-crystal X-ray diffraction, thermogravimetric analyses, IR spectroscopy and elemental analysis. Structures of compounds 1 and 2 are similar. Compounds 1 and 2 show 1D wavy chains, which are further connected through aromatic π-π stacking interactions to expand into 2D wavelike networks. The crystal structure of 2,4-oxybis(benzoic acid) ligand(3) was obtained, and its full geometry optimization was carried out by using DFT methods at the B3LYP/6-31G(d) level. The calculated data show that the bond distances and bond angles were very close to the experimental data. The values of the frontier orbital energies indicate that this configuration is stable. Moreover, the solid-state fluorescence properties of 1-3 have also been investigated.
基金the Natural Science Foundation of Hebei Province 596028 and the National NaturalScience Foundation of China No.59871062.
文摘The compound ingots of Pr0.15TbxDy0.85-xFe2 (x=0 to 0.85) were prepared by arc melting in a water Cu boat using arc furnace under a purified Ar atmosphere. Appropriate annealing (850℃, 100 h) can obtain single Laves phase compound. The magnetostriction for these systems will rise obviously when partially substituted Tb or Dy by Pr.
文摘Michael addition of nitroalkanes to α,β-unsaturated carbonyl compounds occurs in the presence of KF/AI_2O_3/PEG4000 without solvent.Yields are fair to good and work-ups are easy.