Acetylene is produced from the reaction between calcium carbide(CaC_(2))and water,while the production of CaC_(2) generates significant amount of carbon dioxide not only because it is an energy-intensive process but a...Acetylene is produced from the reaction between calcium carbide(CaC_(2))and water,while the production of CaC_(2) generates significant amount of carbon dioxide not only because it is an energy-intensive process but also the raw material for CaC_(2) synthesis is from coal.Here,a comprehensive biomass-to-acetylene process was constructed that integrated several units including biomass pyrolysis,oxygen-thermal CaC_(2) fabrication and calcium looping.For comparison,a coal-to-acetylene process was also established by using coal as feedstock.The carbon efficiency,energy efficiency and environmental impacts of the bio-based calcium carbide acetylene(BCCA)and coal-based calcium carbide acetylene(CCCA)processes were systematically analyzed.Moreover,the environmental impacts were further evaluated by applying thermal integration at system level and energy substitution in CaC_(2) furnace.Even though the BCCA process showed lower carbon efficiency and energy efficiency than that of the CCCA process,life cycle assessment demonstrated the BCCA(1.873 kgCO_(2eq) kg-prod^(-1))a lower carbon footprint process which is 0.366 kgCO_(2eq) kg-prod^(-1) lower compared to the CCCA process.With sustainable energy(biomass power)substitution in CaC_(2) furnace,an even lower GWP value of 1.377 kgCO_(2eq) kg-prod^(-1) can be achieved in BCCA process.This work performed a systematic analysis on integrating biomass into industrial acetylene production,and revealed the positive role of biomass as raw material(carbon)and energy supplier.展开更多
A La-modified Al2O3 catalyst was prepared with deposition-precipitation method. The effect of calcination temperature on the reactivity for vapor phase hydrofluorination of acetylene to vinyl fluoride. The catalysts c...A La-modified Al2O3 catalyst was prepared with deposition-precipitation method. The effect of calcination temperature on the reactivity for vapor phase hydrofluorination of acetylene to vinyl fluoride. The catalysts calcined at different temperatures were characterized using NH3-TPD, pyridine-FTIR, X-ray diffraction, and Raman techniques. It was found that the calcination process could not only change the structure of these catalysts but also modify the amount of surface acidity on the catalysts. The catalyst calcined at 400 ℃ exhibited the highest conversion of acetylene (94.6%) and highest selectivity to vinyl fluoride (83.4%) and lower coke deposition selectivity (0.72%). The highest activity was related to the largest amount of surface acidity on the catalyst, and the coke deposition was also related to the total amount of surface acidic sites.展开更多
Anatase TiO_(2)nanospindles containing 89%exposed{101}facets(TIO_(2)-101)and nanosheets with 77%exposed{001}facets(TiO_(2)-001)were hydrothermally synthesized and used as supports for Pd catalysts.The effects of the T...Anatase TiO_(2)nanospindles containing 89%exposed{101}facets(TIO_(2)-101)and nanosheets with 77%exposed{001}facets(TiO_(2)-001)were hydrothermally synthesized and used as supports for Pd catalysts.The effects of the TiO_(2)materials on the catalytic performance of Pd/TiO_(2)-101 and Pd/TiO_(2)-001 catalysts were investigated in the selective hydrogenation of acetylene to polymer-grade ethylene.The PdfTiO_(2)-101 catalyst exhibited enhanced performance in terms of acetylene conversion and ethylene yield.To understand these effects,the catalysts were characterized by H_(2)temperature-programmed desorption(H_(2)-TPD),H_(2)temperature-programmed reduction(H=-TPR),transmission electron microscopy(TEM),pulse CO chemisorption,X-ray photoelectron spectroscopy(XPS),and thermogravimetric analysis(TGA).The TEM and CO chemisorption results confirmed that Pd nanoparticles(NPs)on the TiO_(2)-101 support had a smaller average particle size(1.53 nm)and a higher dispersion(15.95%)than those on the TiO_(2)-001 support(average particle size of 4.36 nm and dispersion of 9.06%).The smaller particle size and higher dispersion of Pd on the Pd/TiO_(2)-101 catalyst provided more reaction active sites,which contributed to the improved catalytic activity of this supported catalyst.展开更多
Sterically congested 2,2-disubstituted indane-1,3-dione derivatives have been syn-thesized and characterized by 1H NMR,13C NMR,FT-IR and elemental analysis.The B3LYP/HF calculations for computation of IR spectra have ...Sterically congested 2,2-disubstituted indane-1,3-dione derivatives have been syn-thesized and characterized by 1H NMR,13C NMR,FT-IR and elemental analysis.The B3LYP/HF calculations for computation of IR spectra have been carried out for the title compounds at the 6-31G and 6-311++G basis set levels.Predicted vibrational frequencies have been assigned and compared with the experimental FT-IR spectra and they are supported each other.展开更多
Disubstituted oxazoles were prepared conveniently by treatment of aromatic -methyl ketones and nitriles with poly[styrene(iodosodiacetate)] in one-pot process.
Purpose: The triazole nucleus is an important part of the therapeutically interesting drug candidate as antimicrobial, analgesic, anticancer, anticonvulsant and anti-inflammatory agents. Methods: Therefore, in this st...Purpose: The triazole nucleus is an important part of the therapeutically interesting drug candidate as antimicrobial, analgesic, anticancer, anticonvulsant and anti-inflammatory agents. Methods: Therefore, in this study, twelve 4,5-disubstituted-1,2,4-triazole-3-thiols were synthesized by the reaction of substituted isothiocyanates and hydrazides using the common method of base catalysed intramolecular dehydrative cyclization of substituted thiosemicarbazides 3(a-f) and 4(a-f). The structures of these compounds were characterized by means of FT-IR, 1H-NMR, and elemental analysis data. All these compounds were screened for antibacterial, antioxidant, antitumor and cytotoxic activities. Results: Among these compounds: 5c, 5f and 6f were found active against gram positive cocci, the compounds 5a, 5b, 5d, 6a and 6f showed 85% free radical scavenging effect at 3 ppm when tested for antioxidant activity, 75% tumors inhibition was recorded using 5c, 5d and 6a and brine shrimps lethality assay declared 5a, 5b and 6d was 129.62 μg/ml, 161.577 μg/ml and 81.56 μg/ml respectively. Conclusion: Compounds carrying significant bioactivity can be further studied using animal models to establish their safety profile prior to initiating clinical trials.展开更多
A study has been made on the plasma polymerization of acetylene/CO_2/H_2 in a capacitively coupled RF plasma. The monomer mixture yielded a crosslinked film with light brown color. A kinetic study is reported for the ...A study has been made on the plasma polymerization of acetylene/CO_2/H_2 in a capacitively coupled RF plasma. The monomer mixture yielded a crosslinked film with light brown color. A kinetic study is reported for the plasma polymer ization of acetylene/CO_2/H_2. The effects of discharge power level and reactor geometry on the rate of polymer formation are reported. The structure of the plasma polymer is investigated by IR study.展开更多
Reaction of polymer-supported a-selenoaldehydes with Grignard reagents afforded polymer-bound B-hydroxyalkyl selenides, which treated with thionyl chloride and triethylamine leading to (E)-1, 2-disubstituted ethenes i...Reaction of polymer-supported a-selenoaldehydes with Grignard reagents afforded polymer-bound B-hydroxyalkyl selenides, which treated with thionyl chloride and triethylamine leading to (E)-1, 2-disubstituted ethenes in good yield.展开更多
A method of synthesis of 4,6-disubstituted 5-thioxo-1,2,4-triazin- 3-ones from benzothioformanilides and semicarbazide is described.And six new compounds were synthesized by this method.
According to the superposition principle of reinforcement of biological activities, 24 novel 1,4- disubstituted phenyl-5-(halo-2-hydroxyphenyl)imino-l,2,3-triazoles was synthesized and characterized by 1H NMR, ^13C ...According to the superposition principle of reinforcement of biological activities, 24 novel 1,4- disubstituted phenyl-5-(halo-2-hydroxyphenyl)imino-l,2,3-triazoles was synthesized and characterized by 1H NMR, ^13C NMR, elemental analysis and IR. All the target compounds were screened for their antibacterial potential in vitro against Monilia albican, Escherichia coli and Staphylococcus aureus. It was shown that all the compounds possessed efficient antibacterial activities at a concentration of 0.1 mg/mL, even at a concentration of 0.01 mg/mL, some of the compounds still exhibited antibacterial activities against Escherichia coli and Monilia albican. At last, the struc- ture-activity relationship was discussed based on the antibacterial results.展开更多
There are very limited approaches to directly gluing two molecules for the production of internal alkenes using the vastly abundant acetylene via 1,2-difunctionalization. Conversion of gaseous acetylene to internal al...There are very limited approaches to directly gluing two molecules for the production of internal alkenes using the vastly abundant acetylene via 1,2-difunctionalization. Conversion of gaseous acetylene to internal alkenes via 1,2-difunctionalization in a desired manner is not as easy as it might be expected due to the potential competition reactions between acetylene and alkene produced and the difficulty in handling this harmful reagent and controlling the regio-and stereoselectivity. In this work, we designed an efficient catalytic system for the incorporation of acetylene gas into tremendous(E)-β-bromo vinylsulfones, which are bench-stable, easy to operate, and can function as bifunctional acetylene and show a rich reactivity profile in Sonogashira coupling, Heck coupling, substituted reaction, and various desulfonylation transformations, providing numerous internal alkenes.展开更多
Mercuric chloride supported on activated carbon(HgCl_2/AC) is used as an industrial catalyst for the hydrochlorination of acetylene. Loss of HgCl_2 by sublimating from the surface of activated carbon causes the irreve...Mercuric chloride supported on activated carbon(HgCl_2/AC) is used as an industrial catalyst for the hydrochlorination of acetylene. Loss of HgCl_2 by sublimating from the surface of activated carbon causes the irreversible deactivation of mercury catalyst and environmental pollution. In this work, a ligand coordination approach based on the Principle of Hard and Soft Acids and Bases(HSAB) was employed to design more stable lowmercury catalyst. The low-mercury catalysts(4% HgCl_2 loading) were prepared by using HgCl_2 and potassium halides(KX, X = Cl, I) as precursors. The HgCl_2-4KI/AC catalyst showed best catalytic stability than HgCl_2/AC and HgCl_2-4KCl/AC in the hydrochloriantion of acetylene. HgCl_2 could form more stable complex with KI,K_2HgI_4 as the main active component of the HgCl_2-4KI/AC catalyst. The characterizations of XRD and EDX analysis illustrated that the active component of HgCl_2-4KI/AC was highly dispersed on the surface of activated carbon.The sublimation rates of HgCl_2 from the catalysts verified that the active component with larger stability constant had better thermal stability. Using Hg(Ⅱ) complexes with high stability constant as the active component may be the research direction of developing highly stable low-mercury catalyst for the hydrochlorination of acetylene.展开更多
基金the National Natural Science Foundation of China(21978128,91934302)the State Key Laboratory of Materials-oriented Chemical Engineering(ZK202006)is acknowledged.
文摘Acetylene is produced from the reaction between calcium carbide(CaC_(2))and water,while the production of CaC_(2) generates significant amount of carbon dioxide not only because it is an energy-intensive process but also the raw material for CaC_(2) synthesis is from coal.Here,a comprehensive biomass-to-acetylene process was constructed that integrated several units including biomass pyrolysis,oxygen-thermal CaC_(2) fabrication and calcium looping.For comparison,a coal-to-acetylene process was also established by using coal as feedstock.The carbon efficiency,energy efficiency and environmental impacts of the bio-based calcium carbide acetylene(BCCA)and coal-based calcium carbide acetylene(CCCA)processes were systematically analyzed.Moreover,the environmental impacts were further evaluated by applying thermal integration at system level and energy substitution in CaC_(2) furnace.Even though the BCCA process showed lower carbon efficiency and energy efficiency than that of the CCCA process,life cycle assessment demonstrated the BCCA(1.873 kgCO_(2eq) kg-prod^(-1))a lower carbon footprint process which is 0.366 kgCO_(2eq) kg-prod^(-1) lower compared to the CCCA process.With sustainable energy(biomass power)substitution in CaC_(2) furnace,an even lower GWP value of 1.377 kgCO_(2eq) kg-prod^(-1) can be achieved in BCCA process.This work performed a systematic analysis on integrating biomass into industrial acetylene production,and revealed the positive role of biomass as raw material(carbon)and energy supplier.
基金ACKNOWLEDGMENT This work was supported by the National Natural Science Foundation of China (No.20873125),
文摘A La-modified Al2O3 catalyst was prepared with deposition-precipitation method. The effect of calcination temperature on the reactivity for vapor phase hydrofluorination of acetylene to vinyl fluoride. The catalysts calcined at different temperatures were characterized using NH3-TPD, pyridine-FTIR, X-ray diffraction, and Raman techniques. It was found that the calcination process could not only change the structure of these catalysts but also modify the amount of surface acidity on the catalysts. The catalyst calcined at 400 ℃ exhibited the highest conversion of acetylene (94.6%) and highest selectivity to vinyl fluoride (83.4%) and lower coke deposition selectivity (0.72%). The highest activity was related to the largest amount of surface acidity on the catalyst, and the coke deposition was also related to the total amount of surface acidic sites.
文摘Anatase TiO_(2)nanospindles containing 89%exposed{101}facets(TIO_(2)-101)and nanosheets with 77%exposed{001}facets(TiO_(2)-001)were hydrothermally synthesized and used as supports for Pd catalysts.The effects of the TiO_(2)materials on the catalytic performance of Pd/TiO_(2)-101 and Pd/TiO_(2)-001 catalysts were investigated in the selective hydrogenation of acetylene to polymer-grade ethylene.The PdfTiO_(2)-101 catalyst exhibited enhanced performance in terms of acetylene conversion and ethylene yield.To understand these effects,the catalysts were characterized by H_(2)temperature-programmed desorption(H_(2)-TPD),H_(2)temperature-programmed reduction(H=-TPR),transmission electron microscopy(TEM),pulse CO chemisorption,X-ray photoelectron spectroscopy(XPS),and thermogravimetric analysis(TGA).The TEM and CO chemisorption results confirmed that Pd nanoparticles(NPs)on the TiO_(2)-101 support had a smaller average particle size(1.53 nm)and a higher dispersion(15.95%)than those on the TiO_(2)-001 support(average particle size of 4.36 nm and dispersion of 9.06%).The smaller particle size and higher dispersion of Pd on the Pd/TiO_(2)-101 catalyst provided more reaction active sites,which contributed to the improved catalytic activity of this supported catalyst.
文摘Sterically congested 2,2-disubstituted indane-1,3-dione derivatives have been syn-thesized and characterized by 1H NMR,13C NMR,FT-IR and elemental analysis.The B3LYP/HF calculations for computation of IR spectra have been carried out for the title compounds at the 6-31G and 6-311++G basis set levels.Predicted vibrational frequencies have been assigned and compared with the experimental FT-IR spectra and they are supported each other.
文摘Disubstituted oxazoles were prepared conveniently by treatment of aromatic -methyl ketones and nitriles with poly[styrene(iodosodiacetate)] in one-pot process.
文摘Purpose: The triazole nucleus is an important part of the therapeutically interesting drug candidate as antimicrobial, analgesic, anticancer, anticonvulsant and anti-inflammatory agents. Methods: Therefore, in this study, twelve 4,5-disubstituted-1,2,4-triazole-3-thiols were synthesized by the reaction of substituted isothiocyanates and hydrazides using the common method of base catalysed intramolecular dehydrative cyclization of substituted thiosemicarbazides 3(a-f) and 4(a-f). The structures of these compounds were characterized by means of FT-IR, 1H-NMR, and elemental analysis data. All these compounds were screened for antibacterial, antioxidant, antitumor and cytotoxic activities. Results: Among these compounds: 5c, 5f and 6f were found active against gram positive cocci, the compounds 5a, 5b, 5d, 6a and 6f showed 85% free radical scavenging effect at 3 ppm when tested for antioxidant activity, 75% tumors inhibition was recorded using 5c, 5d and 6a and brine shrimps lethality assay declared 5a, 5b and 6d was 129.62 μg/ml, 161.577 μg/ml and 81.56 μg/ml respectively. Conclusion: Compounds carrying significant bioactivity can be further studied using animal models to establish their safety profile prior to initiating clinical trials.
文摘A study has been made on the plasma polymerization of acetylene/CO_2/H_2 in a capacitively coupled RF plasma. The monomer mixture yielded a crosslinked film with light brown color. A kinetic study is reported for the plasma polymer ization of acetylene/CO_2/H_2. The effects of discharge power level and reactor geometry on the rate of polymer formation are reported. The structure of the plasma polymer is investigated by IR study.
基金Project 29932020 was supported by the National Natural Science Foundation of China.
文摘Reaction of polymer-supported a-selenoaldehydes with Grignard reagents afforded polymer-bound B-hydroxyalkyl selenides, which treated with thionyl chloride and triethylamine leading to (E)-1, 2-disubstituted ethenes in good yield.
文摘A method of synthesis of 4,6-disubstituted 5-thioxo-1,2,4-triazin- 3-ones from benzothioformanilides and semicarbazide is described.And six new compounds were synthesized by this method.
基金Supported by the National Natural Science Foundation of China(Nos.20976135,21176194)
文摘According to the superposition principle of reinforcement of biological activities, 24 novel 1,4- disubstituted phenyl-5-(halo-2-hydroxyphenyl)imino-l,2,3-triazoles was synthesized and characterized by 1H NMR, ^13C NMR, elemental analysis and IR. All the target compounds were screened for their antibacterial potential in vitro against Monilia albican, Escherichia coli and Staphylococcus aureus. It was shown that all the compounds possessed efficient antibacterial activities at a concentration of 0.1 mg/mL, even at a concentration of 0.01 mg/mL, some of the compounds still exhibited antibacterial activities against Escherichia coli and Monilia albican. At last, the struc- ture-activity relationship was discussed based on the antibacterial results.
基金supported by the National Natural Science Foundation of China(22001079,22271096,22071062,21871096)the China Postdoctoral Science Foundation(2020M682694)。
文摘There are very limited approaches to directly gluing two molecules for the production of internal alkenes using the vastly abundant acetylene via 1,2-difunctionalization. Conversion of gaseous acetylene to internal alkenes via 1,2-difunctionalization in a desired manner is not as easy as it might be expected due to the potential competition reactions between acetylene and alkene produced and the difficulty in handling this harmful reagent and controlling the regio-and stereoselectivity. In this work, we designed an efficient catalytic system for the incorporation of acetylene gas into tremendous(E)-β-bromo vinylsulfones, which are bench-stable, easy to operate, and can function as bifunctional acetylene and show a rich reactivity profile in Sonogashira coupling, Heck coupling, substituted reaction, and various desulfonylation transformations, providing numerous internal alkenes.
基金Supported by the National Natural Science Foundation of China(21476207)the China Postdoctoral Science Foundation(2016M592015)
文摘Mercuric chloride supported on activated carbon(HgCl_2/AC) is used as an industrial catalyst for the hydrochlorination of acetylene. Loss of HgCl_2 by sublimating from the surface of activated carbon causes the irreversible deactivation of mercury catalyst and environmental pollution. In this work, a ligand coordination approach based on the Principle of Hard and Soft Acids and Bases(HSAB) was employed to design more stable lowmercury catalyst. The low-mercury catalysts(4% HgCl_2 loading) were prepared by using HgCl_2 and potassium halides(KX, X = Cl, I) as precursors. The HgCl_2-4KI/AC catalyst showed best catalytic stability than HgCl_2/AC and HgCl_2-4KCl/AC in the hydrochloriantion of acetylene. HgCl_2 could form more stable complex with KI,K_2HgI_4 as the main active component of the HgCl_2-4KI/AC catalyst. The characterizations of XRD and EDX analysis illustrated that the active component of HgCl_2-4KI/AC was highly dispersed on the surface of activated carbon.The sublimation rates of HgCl_2 from the catalysts verified that the active component with larger stability constant had better thermal stability. Using Hg(Ⅱ) complexes with high stability constant as the active component may be the research direction of developing highly stable low-mercury catalyst for the hydrochlorination of acetylene.