An adenine nucleotide derivative 2-aminoadenosine 5'-triphosphate was chemically synthesized through four steps and was characterized with 1H NMR, 31p NMR, 13C NMR, EA and FT-IR. Its ultraviolet and fluorescence prop...An adenine nucleotide derivative 2-aminoadenosine 5'-triphosphate was chemically synthesized through four steps and was characterized with 1H NMR, 31p NMR, 13C NMR, EA and FT-IR. Its ultraviolet and fluorescence properties at various pH values were studied. Two pKa values for the compound were determined by the curves of UV absorption dependency on pH, Which were 0.68 and 4.83, respectively. The values were consistent with those calculated from ACD/Labs software. In addition, hydrolysis of the adenine nucleotide derivative in the catalysis of potato apyrase was studied. The competition of the ATP analogue with ATP for potato apyrase' active site was proved to be a sequential reaction mechanism.展开更多
Applying a stimulating current to acupoints through acupuncture needles–known as electroacupuncture–has the potential to produce analgesic effects in human subjects and experimental animals. When acupuncture was app...Applying a stimulating current to acupoints through acupuncture needles–known as electroacupuncture–has the potential to produce analgesic effects in human subjects and experimental animals. When acupuncture was applied in a rat model, adenosine 5-triphosphate disodium in the extracellular space was broken down into adenosine, which in turn inhibited pain transmission by means of an adenosine A1 receptor-dependent process. Direct injection of an adenosine A1 receptor agonist enhanced the analgesic effect of acupuncture. The analgesic effect of acupuncture appears to be mediated by activation of A1 receptors located on ascending nerves. In neuropathic pain, there is upregulation of P2X purinoceptor 3 (P2X3) receptor expression in dorsal root ganglion neurons. Conversely, the onset of mechanical hyperalgesia was diminished and established hyperalgesia was significantly reversed when P2X3 receptor expression was downregulated. The pathways upon which electroacupuncture appear to act are interwoven with pain pathways, and electroacupuncture stimuli converge with impulses originating from painful areas. Electroacupuncture may act via purinergic A1 and P2X3 receptors simultaneously to induce an analgesic effect on neuropathic pain.展开更多
AIM:To investigate serotonergic Ca 2+ signaling and the expression of 5-hydroxytryptamine(5-HT) receptors,as well as Ca 2+ transporting proteins,in hepatic stellate cells(HSCs) . METHODS:The intracellular Ca 2+ concen...AIM:To investigate serotonergic Ca 2+ signaling and the expression of 5-hydroxytryptamine(5-HT) receptors,as well as Ca 2+ transporting proteins,in hepatic stellate cells(HSCs) . METHODS:The intracellular Ca 2+ concentration([Ca 2+ ]i) of isolated rat HSCs was measured with a fluorescence microscopic imaging system.Quantitative PCR was per-formed to determine the transcriptional levels of 5-HT receptors and endoplasmic reticulum(ER) proteins involved in Ca 2+ storage and release in cultured rat HSCs. RESULTS:Distinct from quiescent cells,activated HSCs exhibited[Ca 2+ ]i transients following treatment with 5-HT,which was abolished by U-73122,a phospholipase C inhibitor.Upregulation of 5-HT2A and 5-HT2B receptors,but not 5-HT3,was prominent during trans-differentiation of HSCs.Pretreatment with ritanserin,a 5-HT2 antagonist,inhibited[Ca 2+ ]i changes upon application of 5-HT.Expression of type 1 inositol-5'-triphosphate receptor and type 2 sarcoplasmic/endoplasmic reticulum Ca 2+ ATPase were also increased during activation of HSCs and serve as the major isotypes for ER Ca 2+ storage and release in activated HSCs.Ca 2+ binding chaperone proteins of the ER,including calreticulin,calnexin and calsequestrin,were up-regulated following activation of HSCs. CONCLUSION:The appearance of 5-HT-induced[Ca 2+ ]i response accompanied by upregulation of metabotropic 5-HT2 receptors and Ca 2+ transporting/chaperone ER proteins may participate in the activating process of HSCs.展开更多
文摘An adenine nucleotide derivative 2-aminoadenosine 5'-triphosphate was chemically synthesized through four steps and was characterized with 1H NMR, 31p NMR, 13C NMR, EA and FT-IR. Its ultraviolet and fluorescence properties at various pH values were studied. Two pKa values for the compound were determined by the curves of UV absorption dependency on pH, Which were 0.68 and 4.83, respectively. The values were consistent with those calculated from ACD/Labs software. In addition, hydrolysis of the adenine nucleotide derivative in the catalysis of potato apyrase was studied. The competition of the ATP analogue with ATP for potato apyrase' active site was proved to be a sequential reaction mechanism.
文摘Applying a stimulating current to acupoints through acupuncture needles–known as electroacupuncture–has the potential to produce analgesic effects in human subjects and experimental animals. When acupuncture was applied in a rat model, adenosine 5-triphosphate disodium in the extracellular space was broken down into adenosine, which in turn inhibited pain transmission by means of an adenosine A1 receptor-dependent process. Direct injection of an adenosine A1 receptor agonist enhanced the analgesic effect of acupuncture. The analgesic effect of acupuncture appears to be mediated by activation of A1 receptors located on ascending nerves. In neuropathic pain, there is upregulation of P2X purinoceptor 3 (P2X3) receptor expression in dorsal root ganglion neurons. Conversely, the onset of mechanical hyperalgesia was diminished and established hyperalgesia was significantly reversed when P2X3 receptor expression was downregulated. The pathways upon which electroacupuncture appear to act are interwoven with pain pathways, and electroacupuncture stimuli converge with impulses originating from painful areas. Electroacupuncture may act via purinergic A1 and P2X3 receptors simultaneously to induce an analgesic effect on neuropathic pain.
基金Supported by Grants from the Korean National Research Foun-dation(2010-0014617)the Myung Sun Kim Memorial Founda-tion(2009)the Yonsei University Faculty Research Grant(2004)
文摘AIM:To investigate serotonergic Ca 2+ signaling and the expression of 5-hydroxytryptamine(5-HT) receptors,as well as Ca 2+ transporting proteins,in hepatic stellate cells(HSCs) . METHODS:The intracellular Ca 2+ concentration([Ca 2+ ]i) of isolated rat HSCs was measured with a fluorescence microscopic imaging system.Quantitative PCR was per-formed to determine the transcriptional levels of 5-HT receptors and endoplasmic reticulum(ER) proteins involved in Ca 2+ storage and release in cultured rat HSCs. RESULTS:Distinct from quiescent cells,activated HSCs exhibited[Ca 2+ ]i transients following treatment with 5-HT,which was abolished by U-73122,a phospholipase C inhibitor.Upregulation of 5-HT2A and 5-HT2B receptors,but not 5-HT3,was prominent during trans-differentiation of HSCs.Pretreatment with ritanserin,a 5-HT2 antagonist,inhibited[Ca 2+ ]i changes upon application of 5-HT.Expression of type 1 inositol-5'-triphosphate receptor and type 2 sarcoplasmic/endoplasmic reticulum Ca 2+ ATPase were also increased during activation of HSCs and serve as the major isotypes for ER Ca 2+ storage and release in activated HSCs.Ca 2+ binding chaperone proteins of the ER,including calreticulin,calnexin and calsequestrin,were up-regulated following activation of HSCs. CONCLUSION:The appearance of 5-HT-induced[Ca 2+ ]i response accompanied by upregulation of metabotropic 5-HT2 receptors and Ca 2+ transporting/chaperone ER proteins may participate in the activating process of HSCs.