期刊文献+
共找到146篇文章
< 1 2 8 >
每页显示 20 50 100
A Scheme Library-Based Ant Colony Optimization with 2-Opt Local Search for Dynamic Traveling Salesman Problem
1
作者 Chuan Wang Ruoyu Zhu +4 位作者 Yi Jiang Weili Liu Sang-Woon Jeon Lin Sun Hua Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第5期1209-1228,共20页
The dynamic traveling salesman problem(DTSP)is significant in logistics distribution in real-world applications in smart cities,but it is uncertain and difficult to solve.This paper proposes a scheme library-based ant... The dynamic traveling salesman problem(DTSP)is significant in logistics distribution in real-world applications in smart cities,but it is uncertain and difficult to solve.This paper proposes a scheme library-based ant colony optimization(ACO)with a two-optimization(2-opt)strategy to solve the DTSP efficiently.The work is novel and contributes to three aspects:problemmodel,optimization framework,and algorithmdesign.Firstly,in the problem model,traditional DTSP models often consider the change of travel distance between two nodes over time,while this paper focuses on a special DTSP model in that the node locations change dynamically over time.Secondly,in the optimization framework,the ACO algorithm is carried out in an offline optimization and online application framework to efficiently reuse the historical information to help fast respond to the dynamic environment.The framework of offline optimization and online application is proposed due to the fact that the environmental change inDTSPis caused by the change of node location,and therefore the newenvironment is somehowsimilar to certain previous environments.This way,in the offline optimization,the solutions for possible environmental changes are optimized in advance,and are stored in a mode scheme library.In the online application,when an environmental change is detected,the candidate solutions stored in the mode scheme library are reused via ACO to improve search efficiency and reduce computational complexity.Thirdly,in the algorithm design,the ACO cooperates with the 2-opt strategy to enhance search efficiency.To evaluate the performance of ACO with 2-opt,we design two challenging DTSP cases with up to 200 and 1379 nodes and compare them with other ACO and genetic algorithms.The experimental results show that ACO with 2-opt can solve the DTSPs effectively. 展开更多
关键词 Dynamic traveling salesman problem(DTSP) offline optimization and online application ant colony optimization(ACO) two-optimization(2-opt)strategy
下载PDF
Efficient 2-D MUSIC algorithm for super-resolution moving target tracking based on an FMCW radar
2
作者 Xuchong Yi Shuangxi Zhang Yuxuan Zhou 《Geodesy and Geodynamics》 EI CSCD 2024年第5期504-515,共12页
Frequency modulated continuous wave(FMCW)radar is an advantageous sensor scheme for target estimation and environmental perception.However,existing algorithms based on discrete Fourier transform(DFT),multiple signal c... Frequency modulated continuous wave(FMCW)radar is an advantageous sensor scheme for target estimation and environmental perception.However,existing algorithms based on discrete Fourier transform(DFT),multiple signal classification(MUSIC)and compressed sensing,etc.,cannot achieve both low complexity and high resolution simultaneously.This paper proposes an efficient 2-D MUSIC algorithm for super-resolution target estimation/tracking based on FMCW radar.Firstly,we enhance the efficiency of 2-D MUSIC azimuth-range spectrum estimation by incorporating 2-D DFT and multi-level resolution searching strategy.Secondly,we apply the gradient descent method to tightly integrate the spatial continuity of object motion into spectrum estimation when processing multi-epoch radar data,which improves the efficiency of continuous target tracking.These two approaches have improved the algorithm efficiency by nearly 2-4 orders of magnitude without losing accuracy and resolution.Simulation experiments are conducted to validate the effectiveness of the algorithm in both single-epoch estimation and multi-epoch tracking scenarios. 展开更多
关键词 2D-MUSIC FMCW radar Moving target tracking SUPER-RESOLUTION algorithm optimization
下载PDF
Optimization of Interval Type-2 Fuzzy Logic System Using Grasshopper Optimization Algorithm
3
作者 Saima Hassan Mojtaba Ahmadieh Khanesar +3 位作者 Nazar Kalaf Hussein Samir Brahim Belhaouari Usman Amjad Wali Khan Mashwani 《Computers, Materials & Continua》 SCIE EI 2022年第5期3513-3531,共19页
The estimation of the fuzzy membership function parameters for interval type 2 fuzzy logic system(IT2-FLS)is a challenging task in the presence of uncertainty and imprecision.Grasshopper optimization algorithm(GOA)is ... The estimation of the fuzzy membership function parameters for interval type 2 fuzzy logic system(IT2-FLS)is a challenging task in the presence of uncertainty and imprecision.Grasshopper optimization algorithm(GOA)is a fresh population based meta-heuristic algorithm that mimics the swarming behavior of grasshoppers in nature,which has good convergence ability towards optima.The main objective of this paper is to apply GOA to estimate the optimal parameters of the Gaussian membership function in an IT2-FLS.The antecedent part parameters(Gaussian membership function parameters)are encoded as a population of artificial swarm of grasshoppers and optimized using its algorithm.Tuning of the consequent part parameters are accomplished using extreme learning machine.The optimized IT2-FLS(GOAIT2FELM)obtained the optimal premise parameters based on tuned consequent part parameters and is then applied on the Australian national electricity market data for the forecasting of electricity loads and prices.The forecasting performance of the proposed model is compared with other population-based optimized IT2-FLS including genetic algorithm and artificial bee colony optimization algorithm.Analysis of the performance,on the same data-sets,reveals that the proposed GOAIT2FELM could be a better approach for improving the accuracy of the IT2-FLS as compared to other variants of the optimized IT2-FLS. 展开更多
关键词 Parameter optimization grasshopper optimization algorithm interval type-2 fuzzy logic system extreme learning machine electricity market forecasting
下载PDF
Designing mixed <i>H</i><sub>2</sub>/<i>H</i><sub>&infin;</sub>structure specified controllers using Particle Swarm Optimization (PSO) algorithm
4
作者 Ayman N. Salman Younis Ali A. Khamees Farooq T. Taha 《Natural Science》 2014年第1期17-22,共6页
This paper proposes an efficient method for designing accurate structure-specified mixed H2/H∞ optimal controllers for systems with uncertainties and disturbance using particle swarm (PSO) algorithm. It is designed t... This paper proposes an efficient method for designing accurate structure-specified mixed H2/H∞ optimal controllers for systems with uncertainties and disturbance using particle swarm (PSO) algorithm. It is designed to find a suitable controller that minimizes the performance index of error signal subject to an unequal constraint on the norm of the closed-loop system. Although the mixed H2/H∞ for the output feedback approach control is considered as a robust and optimal control technique, the design process normally comes up with a complex and non-convex optimization problem, which is difficult to solve by the conventional optimization methods. The PSO can efficiently solve design problems of multi-input-multi-output (MIMO) optimal control systems, which is very suitable for practical engineering designs. It is used to search for parameters of a structure-specified controller, which satisfies mixed performance index. The simulation and experimental results show high feasibility, robustness and practical value compared with the conventional proportional-integral-derivative (PID) and proportional-Integral (PI) controller, and the proposed algorithm is also more efficient compared with the genetic algorithm (GA). 展开更多
关键词 MIXED H2/H∞ optimal Control Particle Swarm optimization algorithm Structure-Specified Controller
下载PDF
Multi-objective capacity allocation optimization method of photovoltaic EV charging station considering V2G 被引量:7
5
作者 ZHENG Xue-qin YAO Yi-ping 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第2期481-493,共13页
Large-scale electric vehicles(EVs) connected to the micro grid would cause many problems. In this paper, with the consideration of vehicle to grid(V2 G), two charging and discharging load modes of EVs were constructed... Large-scale electric vehicles(EVs) connected to the micro grid would cause many problems. In this paper, with the consideration of vehicle to grid(V2 G), two charging and discharging load modes of EVs were constructed. One was the disorderly charging and discharging mode based on travel habits, and the other was the orderly charging and discharging mode based on time-of-use(TOU) price;Monte Carlo method was used to verify the case. The scheme of the capacity optimization of photovoltaic charging station under two different charging and discharging modes with V2 G was proposed. The mathematical models of the objective function with the maximization of energy efficiency, the minimization of the investment and the operation cost of the charging system were established. The range of decision variables, constraints of the requirements of the power balance and the strategy of energy exchange were given. NSGA-Ⅱ and NSGA-SA algorithm were used to verify the cases, respectively. In both algorithms, by comparing with the simulation results of the two different modes, it shows that the orderly charging and discharging mode with V2 G is obviously better than the disorderly charging and discharging mode in the aspects of alleviating the pressure of power grid, reducing system investment and improving energy efficiency. 展开更多
关键词 vehicle to grid (V2G) capacity configuration optimization time-to-use (TOU) price multi-objective optimization NSGA-Ⅱ algorithm NSGA-SA algorithm
下载PDF
Parallel discrete lion swarm optimization algorithm for solving traveling salesman problem 被引量:2
6
作者 ZHANG Daoqing JIANG Mingyan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第4期751-760,共10页
As a typical representative of the NP-complete problem, the traveling salesman problem(TSP) is widely utilized in computer networks, logistics distribution, and other fields. In this paper, a discrete lion swarm optim... As a typical representative of the NP-complete problem, the traveling salesman problem(TSP) is widely utilized in computer networks, logistics distribution, and other fields. In this paper, a discrete lion swarm optimization(DLSO) algorithm is proposed to solve the TSP. Firstly, we introduce discrete coding and order crossover operators in DLSO. Secondly, we use the complete 2-opt(C2-opt) algorithm to enhance the local search ability.Then in order to enhance the efficiency of the algorithm, a parallel discrete lion swarm optimization(PDLSO) algorithm is proposed.The PDLSO has multiple populations, and each sub-population independently runs the DLSO algorithm in parallel. We use the ring topology to transfer information between sub-populations. Experiments on some benchmarks TSP problems show that the DLSO algorithm has a better accuracy than other algorithms, and the PDLSO algorithm can effectively shorten the running time. 展开更多
关键词 discrete lion swarm optimization(DLSO)algorithm complete 2-opt(C2-opt)algorithm parallel discrete lion swarm optimization(PDLSO)algorithm traveling salesman problem(TSP)
下载PDF
Novel Adaptive Memory Event-Triggered-Based Fuzzy Robust Control for Nonlinear Networked Systems via the Differential Evolution Algorithm
7
作者 Wei Qian Yanmin Wu Bo Shen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1836-1848,共13页
This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide... This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide a more reasonable utilization of the constrained communication channel,a novel adaptive memory event-triggered(AMET)mechanism is developed,where two event-triggered thresholds can be dynamically adjusted in the light of the current system information and the transmitted historical data.Sufficient conditions with less conservative design of the fuzzy imperfect premise matching(IPM)controller are presented by introducing the Wirtinger-based integral inequality,the information of membership functions(MFs)and slack matrices.Subsequently,under the IPM policy,a new MFs intelligent optimization technique that takes advantage of the differential evolution algorithm is first provided for IT2 TakagiSugeno(T-S)fuzzy systems to update the fuzzy controller MFs in real-time and achieve a better system control effect.Finally,simulation results demonstrate that the proposed control scheme can obtain better system performance in the case of using fewer communication resources. 展开更多
关键词 Adaptive memory event-triggered(AMET) differential evolution algorithm fuzzy optimization robust control interval type-2(IT2)fuzzy technique.
下载PDF
基于SiO_(2)气凝胶的消防机器人一体化防火隔热结构设计优化
8
作者 王潇 王磊 +1 位作者 刘天奇 张国伟 《消防科学与技术》 CAS 北大核心 2024年第8期1122-1127,1137,共7页
围绕消防机器人工作时机体外表面热防护问题,建立以SiO_(2)气凝胶为隔热材料的一体化热防护结构。通过设置热防护结构传热模型,利用ANSYS软件模拟计算一体化结构在不同工况下的温度分布,以此分析防火隔热性能和传热机理;并对不同的隔热... 围绕消防机器人工作时机体外表面热防护问题,建立以SiO_(2)气凝胶为隔热材料的一体化热防护结构。通过设置热防护结构传热模型,利用ANSYS软件模拟计算一体化结构在不同工况下的温度分布,以此分析防火隔热性能和传热机理;并对不同的隔热材料进行比较,使用最优拉丁超立方方法对一体化热防护结构进行敏感性分析,在满足约束的前提下选用遗传算法对结构进行厚度优化设计。结果表明:以SiO_(2)气凝胶作为隔热材料相比于其他隔热材料,防火隔热性能更好。其与隔热性能比较接近的玻璃纤维相比,同一厚度下隔热能力提升57%,同时面密度和厚度优化分别增加了9.1%和8.3%,且机体结构冷面温度最大值降低56.5%,一体化热防护结构防火隔热性能提升明显。 展开更多
关键词 SiO_(2)气凝胶 热防护结构 隔热性能分析 最优拉丁超立方 遗传算法
下载PDF
OS2架构下智能配网资源优化配置系统设计
9
作者 王义昌 李兴明 +3 位作者 陈静 李波 毕燕雷 廖壬 《自动化仪表》 CAS 2024年第10期7-11,16,共6页
为了降低智能配网资源配置过程中的网损,在第二代操作系统(OS2)架构下设计智能配网资源优化配置系统。将OS2架构作为资源优化配置系统的基础调度依附结构,搭建主网设备协同调度系统的硬件执行环境。在硬件设计的基础上,采用系统总调端... 为了降低智能配网资源配置过程中的网损,在第二代操作系统(OS2)架构下设计智能配网资源优化配置系统。将OS2架构作为资源优化配置系统的基础调度依附结构,搭建主网设备协同调度系统的硬件执行环境。在硬件设计的基础上,采用系统总调端运行管理模块,驱动主网协同电路使用烟花算法求解,以获取配网网损最小、经济效益最大的多目标优化式配置方案。通过运行控制模块驱动电子调度主机,实现配网资源的优化配置。测试结果表明,该系统可结合配网资源中变电站、线路、台区的具体信息,为管理人员提供全景数据统一采集共享服务;能够以配网网损最小、经济效益最大为前提,完成智能配网资源的优化配置。该系统能够提供有效的决策支持,帮助能源管理者作出科学的决策和进行合理的资源配置。 展开更多
关键词 智能配网 第二代操作系统架构 烟花算法 全景建模 配网资源 优化配置
下载PDF
保存基因的2-Opt一般反向差分演化算法 被引量:6
10
作者 刘罡 李元香 郑昊 《小型微型计算机系统》 CSCD 北大核心 2012年第4期789-794,共6页
为了进一步提高差分演化算法的性能,提出一种采用保存基因的2-Opt一般反向差分演化算法,并把它应用于函数优化问题中.新算法具有以下特征:(1)采用保存被选择个体基因的方式组成参加演化的新个体.保存基因的方法可以很好的保持种群多样性... 为了进一步提高差分演化算法的性能,提出一种采用保存基因的2-Opt一般反向差分演化算法,并把它应用于函数优化问题中.新算法具有以下特征:(1)采用保存被选择个体基因的方式组成参加演化的新个体.保存基因的方法可以很好的保持种群多样性;(2)采用一般反向学习(GOBL)机制进行初始化,提高了初始化效率;(3)采用2-Opt算法加速差分演化算法的收敛速度,提高搜索效率.通过测试函数的实验,并与其他差分演化算法进行比较.实验结果证实了新算法的高效性,通用性和稳健性. 展开更多
关键词 差分演化 一般反向学习 2-opt算法 保存基因 函数优化
下载PDF
基于WOA-LSSVM模型的近临界区CO_(2)物性预测 被引量:2
11
作者 贺三 唐凯 +2 位作者 张茂超 薛雅文 薛世奇 《计量学报》 CSCD 北大核心 2023年第5期803-809,共7页
针对CO_(2)状态方程难以准确预测CO_(2)在近临界区的物性参数的问题,采用以鲸鱼优化算法(WOA)优化最小二乘支持向量机(LSSVM)的组合模型(WOA-LSSVM),对近临界区CO_(2)物性进行预测。预测结果表明:同REFPROP软件与PSO-LSSVM模型相比,WOA-... 针对CO_(2)状态方程难以准确预测CO_(2)在近临界区的物性参数的问题,采用以鲸鱼优化算法(WOA)优化最小二乘支持向量机(LSSVM)的组合模型(WOA-LSSVM),对近临界区CO_(2)物性进行预测。预测结果表明:同REFPROP软件与PSO-LSSVM模型相比,WOA-LSSVM模型预测近临界区CO_(2)物性具有更高的精度。相比REFPROP软件,WOA-LSSVM模型将密度与粘度预测结果的均方根误差由133.67、9.33降至35.61、1.58,平均相对误差由31.8%、30.25%降至6.88%、3.88%,决定系数由0.59、0.62提高至0.86、0.83。此外,相对误差在10%以下占比均由0%分别提高到69.23%、92.31%。 展开更多
关键词 计量学 CO_(2)物性预测 鲸鱼优化算法 最小二乘支持向量机 近临界区 密度 粘度
下载PDF
基于2-Opt免疫遗传算法的冷链配送路径优化问题研究 被引量:5
12
作者 王咪 杨孔雨 《物流技术》 2016年第7期72-75,112,共5页
分析了生鲜产品冷链配送的现状,并指出了研究生鲜产品冷链配送路径优化问题的重要意义。考虑配送过程中道路颠簸对于生鲜产品配送成本的影响,同时结合车辆固定成本、运输成本、能源成本、惩罚成本、货损成本等建立冷链物流车辆配送路径... 分析了生鲜产品冷链配送的现状,并指出了研究生鲜产品冷链配送路径优化问题的重要意义。考虑配送过程中道路颠簸对于生鲜产品配送成本的影响,同时结合车辆固定成本、运输成本、能源成本、惩罚成本、货损成本等建立冷链物流车辆配送路径优化模型,并将2-Opt算法与免疫遗传算法相结合对该模型进行求解,最后通过实例分析,证明该模型有效实用,为相关行业的发展和企业运营提供参考。 展开更多
关键词 冷链 2-opt 免疫遗传算法 配送路径优化
下载PDF
基于LASS0-MBAS-ELM的海底多相流管道CO_(2)内腐蚀速率预测
13
作者 骆正山 李蕾 王小完 《热加工工艺》 北大核心 2023年第14期41-45,共5页
针对海底多相流管道CO_(2)内腐蚀发生频繁,检测难度大的问题,建立基于套索回归(LASSO)和多种群甲虫天牛须优化算法(MBAS)的极限学习机(ELM)预测模型,以提高预测效率及预测精度。以LASSO回归筛选腐蚀影响因素,提取关键指标,降低预测输入... 针对海底多相流管道CO_(2)内腐蚀发生频繁,检测难度大的问题,建立基于套索回归(LASSO)和多种群甲虫天牛须优化算法(MBAS)的极限学习机(ELM)预测模型,以提高预测效率及预测精度。以LASSO回归筛选腐蚀影响因素,提取关键指标,降低预测输入维度;采用MBAS对ELM的输入权值及隐层阈值进行修正,避免因随机设置造成的不稳定性。以我国海南东部某海底油气管道的50组数据为例,通过MATLAB模拟仿真,分析预测结果,并与其他两种模型对比。结果表明:温度、pH值、流体流速和CO_(2)分压是影响该类型管道腐蚀的关键因素。LASSO-MBAS-ELM模型的预测结果与实际值拟合度更高,其均方根误差、平均绝对误差及平均绝对百分误差分别为0.089%、0.079%和3.068%,均优于对比模型。所提出的方法在数据有限的情况下,仍具有良好的可靠性和稳定性,为准确掌握海底管道腐蚀状况提供了新的思路;同时为海洋油气运输系统日常运行维护提供了参考依据。 展开更多
关键词 海底多相流管道 CO_(2)内腐蚀 LASSO回归 多种群甲虫天牛须优化算法(MBAS) 极限学习机(ELM)
下载PDF
Optimization of maintenance strategy for high-speed railwaycatenary system based on multistate model 被引量:6
14
作者 YU Guo-liang SU Hong-sheng 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2019年第4期348-360,共13页
A multi-objective optimization model considering both reliability and maintenance cost is proposed to solve the contradiction between reliability and maintenance cost in high-speed railway catenary system maintenance ... A multi-objective optimization model considering both reliability and maintenance cost is proposed to solve the contradiction between reliability and maintenance cost in high-speed railway catenary system maintenance activities.The non-dominated sorting genetic algorithm 2(NSGA2)is applied to multi-objective optimization,and the optimization result is a set of Pareto solutions.Firstly,multistate failure mode analysis is conducted for the main devices leading to the failure of catenary,and then the reliability and failure mode of the whole catenary system is analyzed.The mathematical relationship between system reliability and maintenance cost is derived considering the existing catenary preventive maintenance mode to improve the reliability of the system.Secondly,an improved NSGA2(INSGA2)is proposed,which strengths population diversity by improving selection operator,and introduces local search strategy to ensure that population distribution is more uniform.The comparison results of the two algorithms before and after improvement on the zero-ductility transition(ZDT)series functions show that the population diversity is better and the solution is more uniform using INSGA2.Finally,the INSGA2 is applied to multi-objective optimization of system reliability and maintenance cost in different maintenance periods.The decision-makers can choose the reasonable solutions as the maintenance plans in the optimization results by weighing the relationship between the system reliability and the maintenance cost.The selected maintenance plans can ensure the lowest maintenance cost while the system reliability is as high as possible. 展开更多
关键词 high-speed railway CATENARY multi-objective optimization non-dominated sorting genetic algorithm 2(NSGA2) selection operator local search Pareto solutions
下载PDF
Emission-Reductive and Multi-Objective Coordinative Optimization of Binary Feed for Atmospheric and Vacuum Distillation Unit 被引量:3
15
作者 Huang Xiaoqiao Zhao Tianlong +3 位作者 Li Na Ma Zhanhua Song Lijuan Li Jun 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2017年第4期101-112,共12页
A genetic algorithm based multi-objective coordinative optimization strategy is developed to optimize the operation of a binary feed atmospheric and vacuum distillation system, in which the objective functions cover t... A genetic algorithm based multi-objective coordinative optimization strategy is developed to optimize the operation of a binary feed atmospheric and vacuum distillation system, in which the objective functions cover the economic benefit, the furnace energy consumption and the CO_2 emissions, and meanwhile the simultaneous effect of binary feed composition is also investigated. A cross-call integration of software is developed to implement the optimization algorithm,and once the maximum economic benefit, the minimum furnace energy consumption and the minimum CO_2 emissions are obtained, the Pareto-optimal solution set is worked out, with the practical problems of the refinery being solved. The optimization result shows that under the same furnace energy consumption and the CO_2 emissions as the existing working condition, the economic benefit still allows for a considerable potential of increment by adjusting the heavy oil proportion of the binary feed crude oil. 展开更多
关键词 MULTI-OBJECTIVE optimization atmospheric and vacuum DISTILLATION system genetic algorithm CO2 emissions BINARY FEED composition
下载PDF
Threshold Selection Method Based on Reciprocal Gray Entropy and Artificial Bee Colony Optimization 被引量:1
16
作者 吴一全 孟天亮 +1 位作者 吴诗婳 卢文平 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第4期362-369,共8页
Since the logarithmic form of Shannon entropy has the drawback of undefined value at zero points,and most existing threshold selection methods only depend on the probability information,ignoring the within-class unifo... Since the logarithmic form of Shannon entropy has the drawback of undefined value at zero points,and most existing threshold selection methods only depend on the probability information,ignoring the within-class uniformity of gray level,a method of reciprocal gray entropy threshold selection is proposed based on two-dimensional(2-D)histogram region oblique division and artificial bee colony(ABC)optimization.Firstly,the definition of reciprocal gray entropy is introduced.Then on the basis of one-dimensional(1-D)method,2-D threshold selection criterion function based on reciprocal gray entropy with histogram oblique division is derived.To accelerate the progress of searching the optimal threshold,the recently proposed ABC optimization algorithm is adopted.The proposed method not only avoids the undefined value points in Shannon entropy,but also achieves high accuracy and anti-noise performance due to reasonable 2-D histogram region division and the consideration of within-class uniformity of gray level.A large number of experimental results show that,compared with the maximum Shannon entropy method with 2-D histogram oblique division and the reciprocal entropy method with 2-D histogram oblique division based on niche chaotic mutation particle swarm optimization(NCPSO),the proposed method can achieve better segmentation results and can satisfy the requirement of real-time processing. 展开更多
关键词 image processing threshold selection reciprocal gray entropy 2-D histogram oblique division artificial bee colony (ABC) optimization algorithm
下载PDF
Genetic Based Approach for Optimal Power and Channel Allocation to Enhance D2D Underlaied Cellular Network Capacity in 5G 被引量:1
17
作者 Ahmed.A.Rosas Mona Shokair M.I.Dessouky 《Computers, Materials & Continua》 SCIE EI 2022年第8期3751-3762,共12页
With the obvious throughput shortage in traditional cellular radio networks,Device-to-Device(D2D)communications has gained a lot of attention to improve the utilization,capacity and channel performance of nextgenerati... With the obvious throughput shortage in traditional cellular radio networks,Device-to-Device(D2D)communications has gained a lot of attention to improve the utilization,capacity and channel performance of nextgeneration networks.In this paper,we study a joint consideration of power and channel allocation based on genetic algorithm as a promising direction to expand the overall network capacity for D2D underlaied cellular networks.The genetic based algorithm targets allocating more suitable channels to D2D users and finding the optimal transmit powers for all D2D links and cellular users efficiently,aiming to maximize the overall system throughput of D2D underlaied cellular network with minimum interference level,while satisfying the required quality of service QoS of each user.The simulation results show that our proposed approach has an advantage in terms of maximizing the overall system utilization than fixed,random,BAT algorithm(BA)and Particle Swarm Optimization(PSO)based power allocation schemes. 展开更多
关键词 5G D2D communication spectrum allocation power allocation genetic algorithm optimization BAT-optimization particle swarm optimization
下载PDF
基于改进SPEA2的原油短期调度问题研究
18
作者 王书娟 侯艳 +1 位作者 滕少华 朱清华 《工业工程》 北大核心 2023年第3期124-133,共10页
针对原油短期调度多目标优化问题,在分析已有多目标模型对原油调度过程中的供油罐个数、供油罐切换次数、原油在管道中的混合成本和供油罐罐底混合成本这4个目标优化的基础上,本文建立的模型增加了原油在管道转运过程中的能耗成本这一... 针对原油短期调度多目标优化问题,在分析已有多目标模型对原油调度过程中的供油罐个数、供油罐切换次数、原油在管道中的混合成本和供油罐罐底混合成本这4个目标优化的基础上,本文建立的模型增加了原油在管道转运过程中的能耗成本这一优化目标,使模型更吻合生产实际。在SPEA2算法中引入极值归档集,结合MOGWO算法指导极值归档集更新来提高算法的全局搜索能力;利用余弦相似度对归档集进行裁剪操作,以保证归档集中个体的多样性。将改进算法与多个具有代表性的进化多目标优化算法进行对比实验,结果表明,本文所提出算法在求解原油短期调度问题时性能较优。 展开更多
关键词 原油调度 多目标优化 SPEA2算法 极值归档集
下载PDF
基于多特征优选的Sentinel-2遥感影像林分类型分类 被引量:5
19
作者 闫国东 左雪漫 +3 位作者 陈瑾 胡喜生 周成军 巫志龙 《森林工程》 北大核心 2023年第3期12-20,共9页
为探究Sentinel-2遥感影像林分类型分类的优选特征组合,实现对阔叶林、马尾松林、杉木林和竹林的分类及其效果评价,选取福建省长汀县为研究区,利用Sentinel-2影像提取10个原始波段(O),计算9个光谱指数(S)、7个红边光谱指数(R)和8个纹理... 为探究Sentinel-2遥感影像林分类型分类的优选特征组合,实现对阔叶林、马尾松林、杉木林和竹林的分类及其效果评价,选取福建省长汀县为研究区,利用Sentinel-2影像提取10个原始波段(O),计算9个光谱指数(S)、7个红边光谱指数(R)和8个纹理特征(Te),以及基于数字高程数据计算2个地形特征指数(To),共计36个特征;利用随机森林算法分析不同特征在林分类型分类中的重要性,并利用袋外样本(Out of Band,OOB)数据与平均不纯度减少方法优选特征组合(Optimum Individuality Combination,OIC);对6种不同试验方案(O、O+To、O+To+S、O+To+S+R、O+To+S+R+Te和OIC)进行林分类型分类,并利用混淆矩阵评价分类结果。结果表明,参与林分类型分类的36个特征的重要性为2.11%~5.43%,其中,海拔因子的重要性最高,红边波段、红边光谱指数、纹理特征中均值与相关性也具有较高的重要性;单独使用原始波段对林分类型进行分类,分类精度不高,总体精度为73.26%,Kappa系数为0.64;以原始波段为基础引入其他特征,除原始波段外,其他特征均可以提高分类精度;优选特征组合(OIC)为重要性前27个特征,包含海拔、8个原始波段、7个红边光谱指数和3个纹理特征,分类精度最高,总体精度为83.13%,Kappa系数为0.77,比其余5种试验方案的总体分类精度提高了0.82%~9.87%。以Sentinel-2影像为数据源,随机森林算法优选的特征组合综合多类型特征中对林分类型分类有重要贡献的特征,从而提高了分类精度。研究结果可为GEE平台Sentinel-2影像在森林资源调查中林分类型信息的提取提供参考。 展开更多
关键词 Sentinel-2 红边光谱指数 随机森林算法 优选特征组合
下载PDF
集成式2PR-R型柔顺并联机构优化设计及精密定位性能研究
20
作者 宋晓蕾 《制造技术与机床》 北大核心 2023年第7期125-131,共7页
以精密定位装置在平面内的定位精度作为任务需求,设计具有平面二自由度的2PR-R柔顺并联机构作为本体构型,通过矢量映射关系建立该机构的Jacobian矩阵,验证其多输入-多输出的运动性能。进一步,基于2PR-R柔顺并联机构的运动特性,以机构静... 以精密定位装置在平面内的定位精度作为任务需求,设计具有平面二自由度的2PR-R柔顺并联机构作为本体构型,通过矢量映射关系建立该机构的Jacobian矩阵,验证其多输入-多输出的运动性能。进一步,基于2PR-R柔顺并联机构的运动特性,以机构静态刚度与一阶固有频率分别作为两个子目标构建多目标函数。以机构的Jacobian矩阵作为运动约束条件,以材料体积分数为不等式约束条件,构建该机构优化问题的数值模型,运用水平集算法进行优化问题的解算。最后,采用SolidWorks拟合机构优化结果的边界曲线,并由有限元软件进行相同工况条件下的力学分析。结果表明:平面2PR-R柔顺并联机构优化模型具有微米级运动特性,与原型并联机构具有相同的运动特性。 展开更多
关键词 2PR-R柔顺并联机构 Jacobian矩阵 水平集算法 拓扑优化
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部