The efficient separation of amphoteric organic compounds from dilute solutions is of great importance in the industrial field. In the present work, the reactive extractions of 4-hydroxypyridine(4-HP) with tributyl pho...The efficient separation of amphoteric organic compounds from dilute solutions is of great importance in the industrial field. In the present work, the reactive extractions of 4-hydroxypyridine(4-HP) with tributyl phosphate(TBP), di(2-ethylhexyl) phosphoric acid(D2EHPA) and TBP + D2EHPA dissolved in 1-octanol were investigated, respectively. The influences of the initial concentrations of TBP, D2EHPA and TBP + D2EHPA on distribution ratio(D) were discussed, as well as the reactive extraction mechanism were proposed. The obvious intensification effect was observed when the mixture of TBP and D2EHPA was used as extractant. The best extraction conditions were found to be of the molar ratio of D2EHPA and TBP at 2:1 and the equilibrium aqueous pH at 3.50-4.50. D values increased with the increase of the total concentration of TBP and D2EHPA in 1-octanol. Especially, the analysis on the extraction mechanisms clearly indicate(i) TBP in 1-octanol shows negligible reactive extraction toward 4-HP,(ii) D2EHPA in 1-octanol exhibits moderate extraction effect by forming 4-HP:D2EHPA(1:1) and 4-HP:2D2EHPA(1:2) type complexes, while(iii) D2EHPA in TBP/1-octanol demonstrates the maximum distribution ratio with the 4-HP:D2EHPA(1:1) type complex domination. The discussion provides new insights on the mechanism and opens a new way for the intensified extraction of amphoteric organic compounds by using the mixture of multiple extractants in the diluent.展开更多
目的:探讨甘精胰岛素联合磷酸西格列汀治疗老年2型糖尿病的临床效果。方法:将2021年1月—2022年12月北京市昌平区回龙观社区卫生服务中心门诊收治的160例老年2型糖尿病患者随机分为两组,各80例。对照组单用甘精胰岛素治疗,观察组在对照...目的:探讨甘精胰岛素联合磷酸西格列汀治疗老年2型糖尿病的临床效果。方法:将2021年1月—2022年12月北京市昌平区回龙观社区卫生服务中心门诊收治的160例老年2型糖尿病患者随机分为两组,各80例。对照组单用甘精胰岛素治疗,观察组在对照组基础上采用磷酸西格列汀治疗。对比两组血糖指标、胰岛功能指标、不良反应发生情况。结果:治疗后,两组空腹血糖、餐后2 h血糖、糖化血红蛋白水平降低,且观察组低于对照组(P<0.05)。治疗后,两组胰岛β细胞功能指数、空腹C肽水平、餐后2 h C肽水平升高,且观察组高于对照组,两组胰岛素抵抗指数降低,且观察组低于对照组(P<0.05)。观察组不良反应总发生率低于对照组(P<0.05)。结论:甘精胰岛素联合磷酸西格列汀治疗老年2型糖尿病的临床效果显著,能降低患者血糖水平,保护胰岛功能,减少不良反应。展开更多
A simple and efficient method has been developed;benzil/benzoin undergoes smooth condensation with various substituted aldehyde and ammonium acetate in the presence of potassium dihydrogen phosphate(KH;PO;) under mi...A simple and efficient method has been developed;benzil/benzoin undergoes smooth condensation with various substituted aldehyde and ammonium acetate in the presence of potassium dihydrogen phosphate(KH;PO;) under mild reaction conditions to afford the corresponding trisubstituted imidazole in excellent yields.The method for synthesis of product,the reaction mixture was reflux in ethanol for 40-90 min.The present method is simple,efficient,and cost-effective.展开更多
LiMn2O4 spinel cathode materials were modified with 2 wt.%Li-M-PO4(M=Co,Ni,Mn) by polyol synthesis method.The phosphate surface-modified LiMn2O4 cathode materials were physically characterized by X-ray diffraction(...LiMn2O4 spinel cathode materials were modified with 2 wt.%Li-M-PO4(M=Co,Ni,Mn) by polyol synthesis method.The phosphate surface-modified LiMn2O4 cathode materials were physically characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) and energy dispersive X-ray spectroscopy(EDS).The charge-discharge test showed that the cycling and rate capacities of LiMn2O4 cathode materials were significantly enhanced by stabilizing the electrode surface with phosphate.展开更多
The effects of sorbed phosphate on the kinetics of Cu ̄2+ secondary adsorption on three major types ofsoils in southern and Central China were studied using the batch method and flow (or miscible displacement)techniqu...The effects of sorbed phosphate on the kinetics of Cu ̄2+ secondary adsorption on three major types ofsoils in southern and Central China were studied using the batch method and flow (or miscible displacement)techniques. Both of the methods showed that diffusions were the ratedetermining steps in the Cu ̄2+ adsorp-tion by the soils. By the flow method, the course of Cu ̄2+ adsorption kinetics consisted of two steps-sn initialrapid process and a later slow process of Cu ̄2+ adsorption; while by the batch method, the 90% of Cu ̄2+adsorption reaction was found to finish within first 1 minute. The results obtained using the flow method alsoindicated that for red soil and yellow-brown soil, Cu ̄2+ adsorptions during the initial reaction periods wererestrained when the soils sorbed phosphate, whereas the adsorption reactions were stimulated at the finaltime. For grey Chao soil, sorbed phosphate retarded the Cu ̄2+ adsorption in the whole reaction period. Theresults obtained using the batch method and flow techniques all implied that the different effects of sorbedphosphate would be attributed to its effects on Cu ̄2+ ion diffusion in soil solution.展开更多
Ultrafine-tricalcium phosphate(β-TCP)powders with good crystalline structure were produced by a new process through bone tissue engineering approach rorous β-TCPcermic was combined with recombined human bone morphog...Ultrafine-tricalcium phosphate(β-TCP)powders with good crystalline structure were produced by a new process through bone tissue engineering approach rorous β-TCPcermic was combined with recombined human bone morphogenetic proteins-2(rhBMP-2)to develop a novel composite material ,osteogenesis capacity of the composite was investigated intramuscularly in rat with histological analyses and SEM examination pureβ-TCP porous carmic wsa investigated as the control results show that the compostie materials possess good bilcompatibility biodegradation and strong osteogenesis capacity through inductive process after implantation material degradation began from 2 weeks post-implantation accompanying with the changing o pore structure with the enwrapping and separation fo materials by hyperplatic mesenchymal cells and fibroblast and with the phagocytose reaction of multinucleated giant cells early in 72h immature cartilage could be found within novel composite mature lamellar bone was induced to generate after 3 weeks with strong osteoinduction capacity and controlable bildegradation the novel rhBMP-2\β-TCP porous ceramic is expected to be a promising bone grafting substitute for bone tissue engineering展开更多
In order to modify in-situ synthesized Mg_2Si particles in Mg_2Si/Mg-4Si composite, the modif ication effect of calcium-magnesia phosphate fertilizer on primary Mg_2Si phase in Mg_2Si/Mg-4Si composite was investigated...In order to modify in-situ synthesized Mg_2Si particles in Mg_2Si/Mg-4Si composite, the modif ication effect of calcium-magnesia phosphate fertilizer on primary Mg_2Si phase in Mg_2Si/Mg-4Si composite was investigated by means of X-ray diffraction(XRD), optical microscopy(OM), scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS) analysis. The results indicate that the morphology of the primary Mg_2Si phase apparently changes from coarse dendrites to f ine dispersive polygonal particles, and the mean size is decreased from 277 μm to 17 μm. With the addition of 4.0wt.% calcium-magnesia phosphate fertilizer as a modif ier, the ultimate tensile strength and elongation of the Mg_2Si/Mg-4Si composite are increased from 78.7 MPa and 2.1% to 105.2 MPa and 2.6%, as compared to those of the base composite, which is probably attributed to the formation of the phosphorous compound and the cluster of Ca compounds that acted as the heterogeneous nucleation substrates of the primary Mg_2Si particles, resulting in a ref ined distribution of these precipitates.展开更多
Photoelectrochemical(PEC)H_(2)O_(2)production through water oxidation reaction(WOR)is a promising strategy,however,designing highly efficient and selective photoanode materials remains challenging due to competitive r...Photoelectrochemical(PEC)H_(2)O_(2)production through water oxidation reaction(WOR)is a promising strategy,however,designing highly efficient and selective photoanode materials remains challenging due to competitive reaction pathways.Here,for highly enhanced PEC H_(2)O_(2)production,we present a conformal amorphous titanyl phosphate(a-TP)overlayer on nanoparticulate TiO_(2)surfaces,achieved via lysozyme-molded in-situ surface reforming.The a-TP overlayer modulates surface adsorption energies for reaction intermediates,favoring WOR for H_(2)O_(2)production over the competing O_(2)evolution reaction.Our density functional theory calculations reveal that a-TP/TiO_(2)exhibits a substantial energy uphill for the O·*formation pathway,which disfavors O_(2)evolution but promotes H_(2)O_(2)production.Additionally,the a-TP overlayer strengthens the built-in electric field,resulting in favorable kinetics.Consequently,a-TP/TiO_(2)exhibits 3.7-fold higher Faraday efficiency(FE)of 63%at 1.76 V vs.reversible hydrogen electrode(RHE)under 1 sun illumination,compared to bare TiO_(2)(17%),representing the highest FE among TiO_(2)-based WOR H_(2)O_(2)production systems.Employing the a-TP overlayer constitutes a promising strategy for controlling reaction pathways and achieving efficient solar-to-chemical energy conversion.展开更多
One of the most general methods to enhance the separation of photogenerated carriers for g‐C3N4is to construct a suitable heterojunctional composite,according to the principle of matching energy levels.The interface ...One of the most general methods to enhance the separation of photogenerated carriers for g‐C3N4is to construct a suitable heterojunctional composite,according to the principle of matching energy levels.The interface contact in the fabricated nanocomposite greatly influences the charge transfer and separation so as to determine the final photocatalytic activities.However,the role of interface contact is often neglected,and is rarely reported to date.Hence,it is possible to further enhance the photocatalytic activity of g‐C3N4‐based nanocomposite by improving the interfacial connection.Herein,phosphate-oxygen(P-O)bridged TiO2/g‐C3N4nanocomposites were successfully synthesized using a simple wet chemical method,and the effects of the P-O functional bridges on the photogenerated charge separation and photocatalytic activity for pollutant degradation and CO2reduction were investigated.The photocatalytic activity of g‐C3N4was greatly improved upon coupling with an appropriate amount of nanocrystalline TiO2,especially with P-O bridged TiO2.Atmosphere‐controlled steady‐state surface photovoltage spectroscopy and photoluminescence spectroscopy analyses revealed clearly the enhancement of photogenerated charge separation of g‐C3N4upon coupling with the P-O bridged TiO2,resulting from the built P-O bridges between TiO2and g‐C3N4so as to promote effective transfer of excited electrons from g‐C3N4to TiO2.This enhancement was responsible for the improved photoactivity of the P-O bridged TiO2/g‐C3N4nanocomposite,which exhibited three‐time photocatalytic activity enhancement for2,4‐dichlorophenol degradation and CO2reduction compared with bare g‐C3N4.Furthermore,radical‐trapping experiments revealed that the·OH species formed as hole‐modulated direct intermediates dominated the photocatalytic degradation of2,4‐dichlorophenol.This work provides a feasible strategy for the design and synthesis of high‐performance g‐C3N4‐based nanocomposite photocatalysts for pollutant degradation and CO2reduction.展开更多
基金supported by the Science and Technology Research Project of Henan Province (192102310490 and 212102310505)。
文摘The efficient separation of amphoteric organic compounds from dilute solutions is of great importance in the industrial field. In the present work, the reactive extractions of 4-hydroxypyridine(4-HP) with tributyl phosphate(TBP), di(2-ethylhexyl) phosphoric acid(D2EHPA) and TBP + D2EHPA dissolved in 1-octanol were investigated, respectively. The influences of the initial concentrations of TBP, D2EHPA and TBP + D2EHPA on distribution ratio(D) were discussed, as well as the reactive extraction mechanism were proposed. The obvious intensification effect was observed when the mixture of TBP and D2EHPA was used as extractant. The best extraction conditions were found to be of the molar ratio of D2EHPA and TBP at 2:1 and the equilibrium aqueous pH at 3.50-4.50. D values increased with the increase of the total concentration of TBP and D2EHPA in 1-octanol. Especially, the analysis on the extraction mechanisms clearly indicate(i) TBP in 1-octanol shows negligible reactive extraction toward 4-HP,(ii) D2EHPA in 1-octanol exhibits moderate extraction effect by forming 4-HP:D2EHPA(1:1) and 4-HP:2D2EHPA(1:2) type complexes, while(iii) D2EHPA in TBP/1-octanol demonstrates the maximum distribution ratio with the 4-HP:D2EHPA(1:1) type complex domination. The discussion provides new insights on the mechanism and opens a new way for the intensified extraction of amphoteric organic compounds by using the mixture of multiple extractants in the diluent.
文摘目的:探讨甘精胰岛素联合磷酸西格列汀治疗老年2型糖尿病的临床效果。方法:将2021年1月—2022年12月北京市昌平区回龙观社区卫生服务中心门诊收治的160例老年2型糖尿病患者随机分为两组,各80例。对照组单用甘精胰岛素治疗,观察组在对照组基础上采用磷酸西格列汀治疗。对比两组血糖指标、胰岛功能指标、不良反应发生情况。结果:治疗后,两组空腹血糖、餐后2 h血糖、糖化血红蛋白水平降低,且观察组低于对照组(P<0.05)。治疗后,两组胰岛β细胞功能指数、空腹C肽水平、餐后2 h C肽水平升高,且观察组高于对照组,两组胰岛素抵抗指数降低,且观察组低于对照组(P<0.05)。观察组不良反应总发生率低于对照组(P<0.05)。结论:甘精胰岛素联合磷酸西格列汀治疗老年2型糖尿病的临床效果显著,能降低患者血糖水平,保护胰岛功能,减少不良反应。
文摘A simple and efficient method has been developed;benzil/benzoin undergoes smooth condensation with various substituted aldehyde and ammonium acetate in the presence of potassium dihydrogen phosphate(KH;PO;) under mild reaction conditions to afford the corresponding trisubstituted imidazole in excellent yields.The method for synthesis of product,the reaction mixture was reflux in ethanol for 40-90 min.The present method is simple,efficient,and cost-effective.
基金financially supported by the National High-Tech Research and Development(863) Program of China(No.2006AA11A160)the National Natural Science Foundation of China(No.50604018)
文摘LiMn2O4 spinel cathode materials were modified with 2 wt.%Li-M-PO4(M=Co,Ni,Mn) by polyol synthesis method.The phosphate surface-modified LiMn2O4 cathode materials were physically characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) and energy dispersive X-ray spectroscopy(EDS).The charge-discharge test showed that the cycling and rate capacities of LiMn2O4 cathode materials were significantly enhanced by stabilizing the electrode surface with phosphate.
文摘The effects of sorbed phosphate on the kinetics of Cu ̄2+ secondary adsorption on three major types ofsoils in southern and Central China were studied using the batch method and flow (or miscible displacement)techniques. Both of the methods showed that diffusions were the ratedetermining steps in the Cu ̄2+ adsorp-tion by the soils. By the flow method, the course of Cu ̄2+ adsorption kinetics consisted of two steps-sn initialrapid process and a later slow process of Cu ̄2+ adsorption; while by the batch method, the 90% of Cu ̄2+adsorption reaction was found to finish within first 1 minute. The results obtained using the flow method alsoindicated that for red soil and yellow-brown soil, Cu ̄2+ adsorptions during the initial reaction periods wererestrained when the soils sorbed phosphate, whereas the adsorption reactions were stimulated at the finaltime. For grey Chao soil, sorbed phosphate retarded the Cu ̄2+ adsorption in the whole reaction period. Theresults obtained using the batch method and flow techniques all implied that the different effects of sorbedphosphate would be attributed to its effects on Cu ̄2+ ion diffusion in soil solution.
基金This study was financially supported by 863 Hi-Tech Research and Development Program of China(2002AA326080)The Fund for Youth Teacher of Education Ministry of China(2002123).
文摘Ultrafine-tricalcium phosphate(β-TCP)powders with good crystalline structure were produced by a new process through bone tissue engineering approach rorous β-TCPcermic was combined with recombined human bone morphogenetic proteins-2(rhBMP-2)to develop a novel composite material ,osteogenesis capacity of the composite was investigated intramuscularly in rat with histological analyses and SEM examination pureβ-TCP porous carmic wsa investigated as the control results show that the compostie materials possess good bilcompatibility biodegradation and strong osteogenesis capacity through inductive process after implantation material degradation began from 2 weeks post-implantation accompanying with the changing o pore structure with the enwrapping and separation fo materials by hyperplatic mesenchymal cells and fibroblast and with the phagocytose reaction of multinucleated giant cells early in 72h immature cartilage could be found within novel composite mature lamellar bone was induced to generate after 3 weeks with strong osteoinduction capacity and controlable bildegradation the novel rhBMP-2\β-TCP porous ceramic is expected to be a promising bone grafting substitute for bone tissue engineering
基金financially supported by the Fundamental Research Funds for Central Universities(Grant No.:XDJK2015B001)
文摘In order to modify in-situ synthesized Mg_2Si particles in Mg_2Si/Mg-4Si composite, the modif ication effect of calcium-magnesia phosphate fertilizer on primary Mg_2Si phase in Mg_2Si/Mg-4Si composite was investigated by means of X-ray diffraction(XRD), optical microscopy(OM), scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS) analysis. The results indicate that the morphology of the primary Mg_2Si phase apparently changes from coarse dendrites to f ine dispersive polygonal particles, and the mean size is decreased from 277 μm to 17 μm. With the addition of 4.0wt.% calcium-magnesia phosphate fertilizer as a modif ier, the ultimate tensile strength and elongation of the Mg_2Si/Mg-4Si composite are increased from 78.7 MPa and 2.1% to 105.2 MPa and 2.6%, as compared to those of the base composite, which is probably attributed to the formation of the phosphorous compound and the cluster of Ca compounds that acted as the heterogeneous nucleation substrates of the primary Mg_2Si particles, resulting in a ref ined distribution of these precipitates.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government,Ministry of Science and ICT(MSIT)(NRF-2020M3D1A2102837)the Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant funded by the Korea government(MOTIE)(20214000000500,training program of CCUS for the green growth)。
文摘Photoelectrochemical(PEC)H_(2)O_(2)production through water oxidation reaction(WOR)is a promising strategy,however,designing highly efficient and selective photoanode materials remains challenging due to competitive reaction pathways.Here,for highly enhanced PEC H_(2)O_(2)production,we present a conformal amorphous titanyl phosphate(a-TP)overlayer on nanoparticulate TiO_(2)surfaces,achieved via lysozyme-molded in-situ surface reforming.The a-TP overlayer modulates surface adsorption energies for reaction intermediates,favoring WOR for H_(2)O_(2)production over the competing O_(2)evolution reaction.Our density functional theory calculations reveal that a-TP/TiO_(2)exhibits a substantial energy uphill for the O·*formation pathway,which disfavors O_(2)evolution but promotes H_(2)O_(2)production.Additionally,the a-TP overlayer strengthens the built-in electric field,resulting in favorable kinetics.Consequently,a-TP/TiO_(2)exhibits 3.7-fold higher Faraday efficiency(FE)of 63%at 1.76 V vs.reversible hydrogen electrode(RHE)under 1 sun illumination,compared to bare TiO_(2)(17%),representing the highest FE among TiO_(2)-based WOR H_(2)O_(2)production systems.Employing the a-TP overlayer constitutes a promising strategy for controlling reaction pathways and achieving efficient solar-to-chemical energy conversion.
基金supported by the National Natural Science Foundation of China(U1401245,91622119)the Program for Innovative Research Team in Chinese Universities(IRT1237)+1 种基金the Research Project of Chinese Ministry of Education(213011A)the Science Foundation for Excellent Youth of Harbin City of China(2014RFYXJ002)~~
文摘One of the most general methods to enhance the separation of photogenerated carriers for g‐C3N4is to construct a suitable heterojunctional composite,according to the principle of matching energy levels.The interface contact in the fabricated nanocomposite greatly influences the charge transfer and separation so as to determine the final photocatalytic activities.However,the role of interface contact is often neglected,and is rarely reported to date.Hence,it is possible to further enhance the photocatalytic activity of g‐C3N4‐based nanocomposite by improving the interfacial connection.Herein,phosphate-oxygen(P-O)bridged TiO2/g‐C3N4nanocomposites were successfully synthesized using a simple wet chemical method,and the effects of the P-O functional bridges on the photogenerated charge separation and photocatalytic activity for pollutant degradation and CO2reduction were investigated.The photocatalytic activity of g‐C3N4was greatly improved upon coupling with an appropriate amount of nanocrystalline TiO2,especially with P-O bridged TiO2.Atmosphere‐controlled steady‐state surface photovoltage spectroscopy and photoluminescence spectroscopy analyses revealed clearly the enhancement of photogenerated charge separation of g‐C3N4upon coupling with the P-O bridged TiO2,resulting from the built P-O bridges between TiO2and g‐C3N4so as to promote effective transfer of excited electrons from g‐C3N4to TiO2.This enhancement was responsible for the improved photoactivity of the P-O bridged TiO2/g‐C3N4nanocomposite,which exhibited three‐time photocatalytic activity enhancement for2,4‐dichlorophenol degradation and CO2reduction compared with bare g‐C3N4.Furthermore,radical‐trapping experiments revealed that the·OH species formed as hole‐modulated direct intermediates dominated the photocatalytic degradation of2,4‐dichlorophenol.This work provides a feasible strategy for the design and synthesis of high‐performance g‐C3N4‐based nanocomposite photocatalysts for pollutant degradation and CO2reduction.