This study proposes a multiple attribute group decisionmaking(MAGDM)approach on the basis of the plant growth simulation algorithm(PGSA)and interval 2-tuple weighted average operators for uncertain linguistic weighted...This study proposes a multiple attribute group decisionmaking(MAGDM)approach on the basis of the plant growth simulation algorithm(PGSA)and interval 2-tuple weighted average operators for uncertain linguistic weighted aggregation(ULWA).We provide an example for illustration and verification and compare several aggregation operators to indicate the optimality of the assembly method.In addition,we present two comparisons to demonstrate the practicality and effectiveness of the proposed method.The method can be used not only to aggregate MAGDM problems but also to solve multi-granularity uncertain linguistic information.Its high reliability,easy programming,and high-speed calculation can improve the efficiency of ULWA characteristics.Finally,the proposed method has the exact characteristics for linguistic information processing and can effectively avoid information distortion and loss.展开更多
Crowdsourcing is widely used in various fields to collect goods and services from large participants.Evaluating teaching quality by collecting feedback from experts or students after class is not only delayed but also...Crowdsourcing is widely used in various fields to collect goods and services from large participants.Evaluating teaching quality by collecting feedback from experts or students after class is not only delayed but also not accurate.In this paper,we present a crowdsourcing-based framework to evaluate teaching quality in the classroom using a weighted average operator to aggregate information from students’questionnaires described by linguistic 2-tuple terms.Then we define crowd grade based on similarity degree to distinguish contribution from different students and minimize the abnormal students’impact on the evaluation.The crowd grade would be updated at the end of each feedback so it can guarantee the evaluation accurately.Moreover,a simulated case is shown to illustrate how to apply this framework to assess teaching quality in the classroom.Finally,we developed a prototype and carried out some experiments on a series of real questionnaires and two sets of modified data.The results show that teachers can locate the weak points of teaching and furthermore to identify the abnormal students to improve the teaching quality.Meanwhile,our approach provides a strong tolerance for the abnormal student to make the evaluation more accurate.展开更多
In order to lessen adverse influences of excessive evaluative indicators of the initial set in multi-sensory evaluation,a2-tuple and rough set based reduction model is built to simplify the initial set of evaluative i...In order to lessen adverse influences of excessive evaluative indicators of the initial set in multi-sensory evaluation,a2-tuple and rough set based reduction model is built to simplify the initial set of evaluative indicators. In the model,a great variety of descriptive forms of the multi-sensory evaluation are also taken into consideration. As a result,the method proves effective in reducing redundant indexes and minimizing index overlaps without compromising the integrity of the evaluation system. By applying the model in a multi-sensory evaluation involving community public information service facilities,the research shows that the results are satisfactory when using genetic algorithm optimized BP neural network as a calculation tool. It shows that using the reduced and simplified set of indicators has a better predication performance than the initial set,and 2-tuple and rough set based model offers an efficient way to reduce indicator redundancy and improves prediction capability of the evaluation model.展开更多
This paper presents an expert-based fuzzy analytic hierarchy process( AHP) model for evaluating emergency response capacity of Chemical Industrial Park( ERCCIP) by jointly using an improved fuzzy preference programmin...This paper presents an expert-based fuzzy analytic hierarchy process( AHP) model for evaluating emergency response capacity of Chemical Industrial Park( ERCCIP) by jointly using an improved fuzzy preference programming( FPP) and 2-tuple fuzzy linguistic approach. An evaluation index system for ERCCIP is proposed. The weight of sub-criteria and criteria of the evaluation index system for ERCCIP are determined using the improved FPP. And the ratings of sub-criteria are assessed in linguistic values according to the experts' subjective opinions. Finally,the aggregated ratings of criteria and the overall ERCCIP are calculated.展开更多
This paper presents a web-based integrated system for on-line sensory fabric hand evaluation. The methods of fuzzy techniques, neural networks, classical factorial analysis and other data analysis are used in the syst...This paper presents a web-based integrated system for on-line sensory fabric hand evaluation. The methods of fuzzy techniques, neural networks, classical factorial analysis and other data analysis are used in the system to analyze the objective and subjective data, and to build the relationship between them. Given the objective data of a new fabric sample, the system can provide its sensory hand data and its total hand grade. In meantime, the total hand grade can be obtained directly from the sensory fabric hand data if provided. The sensory evaluation system is developed in Internet environment using Java language and SQL server database management system.展开更多
Most of modern systems for information retrieval, fusion and management have to deal with more and more qualitative information (by linguistic labels) besides information expressed quantitatively (by numbers), sin...Most of modern systems for information retrieval, fusion and management have to deal with more and more qualitative information (by linguistic labels) besides information expressed quantitatively (by numbers), since human reports are better and easier expressed in natural language than with numbers. In this paper, Herrera-Martfnez's 2-Tuple linguistic representation model is extended for reasoning with uncertain and qualitative information in Dezert-Smarandache Theory (DSmT) framework, in order to overcome the limitations of current approaches, i.e., the lack of precision in the final results of linguistic information fusion according to 1-Tuple representation ( q1 )- The linguistic information which expresses the expert's qualitative beliefs is expressed by means of mixed 2 Tuples (equidistant linguistic labels with a numeric biased value). Together with the 2-Tuple representation model, some basic operators are presented to carry out the fusion operation among qualitative information sources. At last, through simple example how 2-Tuple qualitative DSmT-based (q2 DSmT) fusion rules can be used for qualitative reasoning and fusion under uncertainty, which advantage is also showed by comparing with other methods.展开更多
基金supported by the National Natural Science Foundation of China(71771118 71471083)+1 种基金the Ministry of Education Humanities and Social Sciences Foundation of China(18YJCZH146)the Nanjing University Double First-Class project
文摘This study proposes a multiple attribute group decisionmaking(MAGDM)approach on the basis of the plant growth simulation algorithm(PGSA)and interval 2-tuple weighted average operators for uncertain linguistic weighted aggregation(ULWA).We provide an example for illustration and verification and compare several aggregation operators to indicate the optimality of the assembly method.In addition,we present two comparisons to demonstrate the practicality and effectiveness of the proposed method.The method can be used not only to aggregate MAGDM problems but also to solve multi-granularity uncertain linguistic information.Its high reliability,easy programming,and high-speed calculation can improve the efficiency of ULWA characteristics.Finally,the proposed method has the exact characteristics for linguistic information processing and can effectively avoid information distortion and loss.
文摘Crowdsourcing is widely used in various fields to collect goods and services from large participants.Evaluating teaching quality by collecting feedback from experts or students after class is not only delayed but also not accurate.In this paper,we present a crowdsourcing-based framework to evaluate teaching quality in the classroom using a weighted average operator to aggregate information from students’questionnaires described by linguistic 2-tuple terms.Then we define crowd grade based on similarity degree to distinguish contribution from different students and minimize the abnormal students’impact on the evaluation.The crowd grade would be updated at the end of each feedback so it can guarantee the evaluation accurately.Moreover,a simulated case is shown to illustrate how to apply this framework to assess teaching quality in the classroom.Finally,we developed a prototype and carried out some experiments on a series of real questionnaires and two sets of modified data.The results show that teachers can locate the weak points of teaching and furthermore to identify the abnormal students to improve the teaching quality.Meanwhile,our approach provides a strong tolerance for the abnormal student to make the evaluation more accurate.
基金National Natural Science Foundation of China(No.50775108)Priority Academic Program Development of Jiangsu Higher Education Institutions,China(PAPD)
文摘In order to lessen adverse influences of excessive evaluative indicators of the initial set in multi-sensory evaluation,a2-tuple and rough set based reduction model is built to simplify the initial set of evaluative indicators. In the model,a great variety of descriptive forms of the multi-sensory evaluation are also taken into consideration. As a result,the method proves effective in reducing redundant indexes and minimizing index overlaps without compromising the integrity of the evaluation system. By applying the model in a multi-sensory evaluation involving community public information service facilities,the research shows that the results are satisfactory when using genetic algorithm optimized BP neural network as a calculation tool. It shows that using the reduced and simplified set of indicators has a better predication performance than the initial set,and 2-tuple and rough set based model offers an efficient way to reduce indicator redundancy and improves prediction capability of the evaluation model.
基金Sponsored by the National Natural Science Foundation of China(Grant No.41001354)Fundamental Research Funds for the Central Universities of China(Grant No.23420110083)
文摘This paper presents an expert-based fuzzy analytic hierarchy process( AHP) model for evaluating emergency response capacity of Chemical Industrial Park( ERCCIP) by jointly using an improved fuzzy preference programming( FPP) and 2-tuple fuzzy linguistic approach. An evaluation index system for ERCCIP is proposed. The weight of sub-criteria and criteria of the evaluation index system for ERCCIP are determined using the improved FPP. And the ratings of sub-criteria are assessed in linguistic values according to the experts' subjective opinions. Finally,the aggregated ratings of criteria and the overall ERCCIP are calculated.
基金supported by the joint Sino-French Advanced Research Program(No:PRA-SI-01-05)the National Natural Science Foundation(60004006)from P.R.China.
文摘This paper presents a web-based integrated system for on-line sensory fabric hand evaluation. The methods of fuzzy techniques, neural networks, classical factorial analysis and other data analysis are used in the system to analyze the objective and subjective data, and to build the relationship between them. Given the objective data of a new fabric sample, the system can provide its sensory hand data and its total hand grade. In meantime, the total hand grade can be obtained directly from the sensory fabric hand data if provided. The sensory evaluation system is developed in Internet environment using Java language and SQL server database management system.
基金Supported by the National Natural Science Foundation of China (60804063)863 Program (2006AA040202)
文摘Most of modern systems for information retrieval, fusion and management have to deal with more and more qualitative information (by linguistic labels) besides information expressed quantitatively (by numbers), since human reports are better and easier expressed in natural language than with numbers. In this paper, Herrera-Martfnez's 2-Tuple linguistic representation model is extended for reasoning with uncertain and qualitative information in Dezert-Smarandache Theory (DSmT) framework, in order to overcome the limitations of current approaches, i.e., the lack of precision in the final results of linguistic information fusion according to 1-Tuple representation ( q1 )- The linguistic information which expresses the expert's qualitative beliefs is expressed by means of mixed 2 Tuples (equidistant linguistic labels with a numeric biased value). Together with the 2-Tuple representation model, some basic operators are presented to carry out the fusion operation among qualitative information sources. At last, through simple example how 2-Tuple qualitative DSmT-based (q2 DSmT) fusion rules can be used for qualitative reasoning and fusion under uncertainty, which advantage is also showed by comparing with other methods.