BACKGROUND: Interleukin-18 (IL-18), a pro-inflamma- tory cytokine that induces interferon-γ (IFN-γ) production in T cells and natural killer cells, plays a critical role in the T-lymphocyte helper type 1 ( Th1) resp...BACKGROUND: Interleukin-18 (IL-18), a pro-inflamma- tory cytokine that induces interferon-γ (IFN-γ) production in T cells and natural killer cells, plays a critical role in the T-lymphocyte helper type 1 ( Th1) response. This study was designed to explore the effect of IL-18 on peripheral blood mononuclear cells ( PBMCs) derived from chronic hepatitis B (CHB) and on hepatitis B virus (HBV) DNA released by HepG2.2.15 cell lines, which were transfected with hepatitis B virus gene in vitro. METHODS: PBMCs isolated from 25 healthy people and 25 patients with CHB were stimulated with HBcAg and IL-18 of various concentrations for 72 hours. The levels of IFN-γ in the supernatants of cultured PBMCs were determined by ELISA. After the stimulation of IL-18 of various concentra- tions, PBMCs derived from one patient were co-cultured for 96 hours with HepG2. 2. 15 cells which had been cul- tured for 24 hours, and then the supernatants were collected by centrifugation and used for HBV DNA quantitative as- say. RESULTS: When PBMCs were stimulated by HBcAg and IL-18 at various concentrations, the levels of IFN-γ in the supernatants of CHB groups were much higher than those in normal control groups, at 0.2 ng/ml: t =11.70, P< 0.01; at 1.0 ng/ml: t =16.19, P<0.01; and at5.0 ng/ml: t =20.12, P <0.01. In the CHB groups, the levels of IFN-γ in the supernatants of PBMCs stimulated by HBcAg alone were lower than both those stimulated by HBcAg and EL-18 at various concentrations and those stimulated by HBcAg and EL-18 (5.0 ng/ml) together with EL-12 (mild: t = 2.20, P<0.05; moderate; t=2.97, P<0.05; severe; t = 0.66, P >0.05). The content of HBV DNA in the superna- tant of co-cultivation of HepG2. 2. 15 cells and PBMCs without stimulated materials was higher than that stimula-ted by HBcAg and EL-18 at various concentrations of HBc- Ag and IL-18 together with IL-12/IFN-α1lb. CONCLUSION: DL-18 can induce IFN-γ secretion and pro- bably play a key role in the modulation of both innate and adaptive immunity. It has implications in improving im- munoregulatory effect and increasing the ability of immune cells to kill cells infected by virus.展开更多
AIM: To observe the inhibition of hepatitis B virus (HBV) replication and expression in HepG2.2.15 cells by combination of small interfering RNAs (siRNAs). METHODS: Recombinant plasmid psiI-HBV was constructed a...AIM: To observe the inhibition of hepatitis B virus (HBV) replication and expression in HepG2.2.15 cells by combination of small interfering RNAs (siRNAs). METHODS: Recombinant plasmid psiI-HBV was constructed and transfected into HepG2.2.15 cells. At 48 h, 72 h and 96 h after transfection, culture media were collected and cells were harvested for HBV replication assay. HBsAg and HBeAg in the cell culture medium were detected by enzyme-linked immunoadsorbent assay (ELISA). Intracellular viral DNA and covalently closed circular DNA (cccDNA) were quantified by real-time polymerase chain reaction (PCR). HBV viral mRNA was reverse transcribed and quantified by reverse-transcript PCR (RT-PCR). RESULTS: siRNAs showed marked anti-HBV effects. siRNAs could specifically inhibit the expression of HBsAg and the replication of HBV DNA in a dosedependent manner. Furthermore, combination of siRNAs, compared with individual use of each siRNA, exerted a stronger inhibition on antigen expression and viral replication. More importantlycombination of siRNAs significantly suppressed HBV cccDNA amplification. CONCLUSION: Combination of siRNAs mediates a stronger inhibition on viral replication and antigenexpression in HepG2.2.15 cells, especially on cccDNA amplification.展开更多
AIM: To investigate the antiviral effect of beta-L- enantiomer of 2;3'-didehydro-2',3″-dideoxyadenosine (13-L-D4A) on 2.2.15 cells transfected with the hepatitis B virus (HBV) genome.METHODS: Lamivudine (3TC...AIM: To investigate the antiviral effect of beta-L- enantiomer of 2;3'-didehydro-2',3″-dideoxyadenosine (13-L-D4A) on 2.2.15 cells transfected with the hepatitis B virus (HBV) genome.METHODS: Lamivudine (3TC) as a positive control. Then, HBV DNA in treated 2.2.15 cells and the Hepatitis B surface antigen (HBsAg) in the culture supernatants were detected to determine the inhibitory effect of β-L- D4A. At the same time, 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) was used to detect the survival ratio of 2.2.15 cells.RESULTS: β-L-D4A has a dose-dependent inhibitory effect on HBV DNA replication; this effect was apparent when the concentration was above 1 mol/L. When β-L- D4A was at the highest concentration, 100 mol/L, the HBsAg inhibition ratio was above 50%. The Therapeutic index (TI) of β-L-D4A was above 2.1.CONCLUSION: β-L-D4A has a dose-dependent inhibitory effect on the replication of HBV DNA and the secretion of HBsAg at low toxicity,展开更多
AIM: To investigate the role of human La protein in HBV mRNA expression.METHODS: Three human La protein (hLa) specific siRNA expression cassettes (SECs) containing U6+1 promoter were prepared via one-step overlapping ...AIM: To investigate the role of human La protein in HBV mRNA expression.METHODS: Three human La protein (hLa) specific siRNA expression cassettes (SECs) containing U6+1 promoter were prepared via one-step overlapping extension PCR. After transfection with SECs into HepG2 cells, inhibition effects on hLa expression were analyzed by semi-quantitative RT-PCR and Western blotting. Then, effective SECs were screened out and transfected into 2.2.15 cells, a stable HBV-producing cell line. HBV surface antigen(HBsAg) and e antigen (HBeAg) secretions into culture media were detected by microparticle enzyme immunoassay (MEIA) and HBs and HBe mRNA levels were analyzed by semi-quantitative RT-PCR.RESULTS: SEC products containing U6+1 snRNA promoter,and 3 sites of hLa mRNA specific siRNA were obtained successfully by one-step overlapping extension PCR and could be directly transfected into HepG2 cells, resulting in inhibition of La protein expression in both mRNA and protein levels, among which U6+l-hLa833 was the most efficient,which reduced 18.6-fold mRNA and 89% protein level respectively. In 2.2.15 cells, U6+l-hLa833 was also efficient on inhibition of hLa expression. Furthermore, semi-quantitative RT-PCR showed that HI3s and HBe mRNA levels were significantly decreased by 8-and 66-fold in U6+l-hLa833 transfected cells compared to control. Accordingly, HBsAg and HBeAg secretions were decreased partly posttransfection with SECs.CONCLUSION: PCR-based SECs can be used to mediate RNAi in mammalian cells and provide a novel approach to study the function of La protein. The inhibition of La protein expression can result in a significant decrease ofHBV mRNA, which implies that the hLa protein is also involved HBV RNA metabolism as one of the HBV RNA-stabilizing factors in human cells.展开更多
This study investigated the expression profiles of IL-10 gene in three human hepatoma cell lines including Huh7, HepG2, and HepG2 transfected with a plasmid containing hepatitis B virus (HBV) named HepG2.2.15. RT-PC...This study investigated the expression profiles of IL-10 gene in three human hepatoma cell lines including Huh7, HepG2, and HepG2 transfected with a plasmid containing hepatitis B virus (HBV) named HepG2.2.15. RT-PCR analysis demonstrated that IL-10 message RNA was absent in HepG2 and Huh7 cells, whereas it was present in HepG2.2.15 cells, which was consistent with ELISA result. Furthermore, except for lamivudine other antiviral treatments did not significantly decrease the HBV DNA level in HepG2.2.15 cells, while they had different effects on the expression of IL-10 protein, although stimulation by LPS had no significant effect. In addition, except for poly(I:C), the other treatments decreased the expression of IL-10 protein to different degrees, but had no sig-nificant effects on the expression of NF-κB and MyD88. Meanwhile, all treatments we used had effect on the expression of STAT1. In conclusion, IL-10 was expressed in HepG2.2.15 cells and STAT1 pathway might be involved in the regulation of IL-10 expression in HepG2.2.15 cells, but it was not the sole pathway, the exact mechanism warrants further study.展开更多
AIM: To explore the anti-hepatitis B virus (HBV) effects of Boehmeria nivea (B. nivea) root extract (BNE) by using the HepG2 2.2.15 cell model system. METHODS: Hepatitis B surface antigen (HBsAg), hepatitis B virus e ...AIM: To explore the anti-hepatitis B virus (HBV) effects of Boehmeria nivea (B. nivea) root extract (BNE) by using the HepG2 2.2.15 cell model system. METHODS: Hepatitis B surface antigen (HBsAg), hepatitis B virus e antigen (HBeAg), and HBV DNA were measured by using ELISA and real-time PCR, respectively. Viral DNA replication and RNA expression were determined by using Southern and Northern blot, respectively. RESULTS: In HepG2 2.2.15 cells, HBeAg (60%, P < 0.01) and particle-associated HBV DNA (> 99%, P < 0.01) secretion into supernatant were significantly inhibited by BNE at a dose of 100 mg/L, whereas the HBsAg was not inhibited. With different doses of BNE, the reduced HBeAg was correlated with the inhibition of HBV DNA. The anti-HBV effect of BNE was not caused by its cytotoxicity to cells or inhibition of viral DNA replication and RNA expression. CONCLUSION: BNE could effectively reduce the HBV production and its anti-HBV machinery might differ from the nucleoside analogues.展开更多
AIM: To observe the inhibition of hepatitis B virus (HBV) replication and expression by combination of siRNA and lamivudine in HepG2.2.15 cells. METHODS: Recombinant plasmid psil-HBV was constructed and transfected in...AIM: To observe the inhibition of hepatitis B virus (HBV) replication and expression by combination of siRNA and lamivudine in HepG2.2.15 cells. METHODS: Recombinant plasmid psil-HBV was constructed and transfected into HepG2.2.15 cells. The transfected cells were cultured in lamivudine-containing medium (0.05 μmol/L) and harvested at 48, 72 and 96 h. The concentration of HBeAg and HBsAg was determined using ELISA. HBV DNA replication was examined by real- time PCR and the level of HBV mRNA was measured by RT-PCR. RESULTS: In HepG2.2.15 cells treated with combination of siRNA and lamivudine, the secretion of HBeAg and HBsAg into the supernatant was found to be inhibited by 91.80% and 82.40% (2.89 ± 0.48 vs 11.73 ± 0.38, P < 0.05; 4.59 ± 0.57 vs 16.25 ± 0.48, P < 0.05) at 96 h, respectively; the number of HBV DNA copies within culture medium was also significantly decreased at 96 h (1.04 ± 0.26 vs 8.35 ± 0.33, P < 0.05). Moreover, mRNA concentration in HepG2.2.15 cells treated with combination of siRNA and lamivudine was obviously lower compared to those treated either with siRNA or lamivudine (19.44 ± 0.17 vs 33.27 ± 0.21 or 79.9 ± 0.13, P < 0.05). CONCLUSION: Combination of siRNA and lamivudine is more effective in inhibiting HBV replication as compared to the single use of siRNA or lamivudine in HepG2.2.15 cells.展开更多
BACKGROUND The role of exosomes derived from HepG2.2.15 cells,which express hepatitis B virus(HBV)-related proteins,in triggering the activation of LX2 liver stellate cells and promoting liver fibrosis and cell prolif...BACKGROUND The role of exosomes derived from HepG2.2.15 cells,which express hepatitis B virus(HBV)-related proteins,in triggering the activation of LX2 liver stellate cells and promoting liver fibrosis and cell proliferation remains elusive.The focus was on comprehending the relationship and influence of differentially expressed microRNAs(DE-miRNAs)within these exosomes.AIM To elucidate the effect of exosomes derived from HepG2.2.15 cells on the activation of hepatic stellate cell(HSC)LX2 and the progression of liver fibrosis.METHODS Exosomes from HepG2.2.15 cells,which express HBV-related proteins,were isolated from parental HepG2 and WRL68 cells.Western blotting was used to confirm the presence of the exosomal marker protein CD9.The activation of HSCs was assessed using oil red staining,whereas DiI staining facilitated the observation of exosomal uptake by LX2 cells.Additionally,we evaluated LX2 cell proliferation and fibrosis marker expression using 5-ethynyl-2′-deoxyuracil staining and western blotting,respectively.DE-miRNAs were analyzed using DESeq2.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways were used to annotate the target genes of DE-miRNAs.RESULTS Exosomes from HepG2.2.15 cells were found to induced activation and enhanced proliferation and fibrosis in LX2 cells.A total of 27 miRNAs were differentially expressed in exosomes from HepG2.2.15 cells.GO analysis indicated that these DE-miRNA target genes were associated with cell differentiation,intracellular signal transduction,negative regulation of apoptosis,extracellular exosomes,and RNA binding.KEGG pathway analysis highlighted ubiquitin-mediated proteolysis,the MAPK signaling pathway,viral carcinogenesis,and the toll-like receptor signaling pathway,among others,as enriched in these targets.CONCLUSION These findings suggest that exosomes from HepG2.2.15 cells play a substantial role in the activation,proliferation,and fibrosis of LX2 cells and that DE-miRNAs within these exosomes contribute to the underlying mechanisms.展开更多
Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and t...Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and the generation of new scars can make it very difficult for the impaired nervous system to restore its neural functionality.Traditional treatments can only alleviate secondary injuries but cannot fundamentally repair the spinal cord.Consequently,there is a critical need to develop new treatments to promote functional repair after spinal cord injury.Over recent years,there have been seve ral developments in the use of stem cell therapy for the treatment of spinal cord injury.Alongside significant developments in the field of tissue engineering,three-dimensional bioprinting technology has become a hot research topic due to its ability to accurately print complex structures.This led to the loading of three-dimensional bioprinting scaffolds which provided precise cell localization.These three-dimensional bioprinting scaffolds co uld repair damaged neural circuits and had the potential to repair the damaged spinal cord.In this review,we discuss the mechanisms underlying simple stem cell therapy,the application of different types of stem cells for the treatment of spinal cord injury,and the different manufa cturing methods for three-dimensional bioprinting scaffolds.In particular,we focus on the development of three-dimensional bioprinting scaffolds for the treatment of spinal cord injury.展开更多
Parkinson’s disease is typically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta.Many studies have been performed based on the supplementation of lost dopaminergic ...Parkinson’s disease is typically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta.Many studies have been performed based on the supplementation of lost dopaminergic neurons to treat Parkinson’s disease.The initial strategy for cell replacement therapy used human fetal ventral midbrain and human embryonic stem cells to treat Parkinson’s disease,which could substantially alleviate the symptoms of Parkinson’s disease in clinical practice.However,ethical issues and tumor formation were limitations of its clinical application.Induced pluripotent stem cells can be acquired without sacrificing human embryos,which eliminates the huge ethical barriers of human stem cell therapy.Another widely considered neuronal regeneration strategy is to directly reprogram fibroblasts and astrocytes into neurons,without the need for intermediate proliferation states,thus avoiding issues of immune rejection and tumor formation.Both induced pluripotent stem cells and direct reprogramming of lineage cells have shown promising results in the treatment of Parkinson’s disease.However,there are also ethical concerns and the risk of tumor formation that need to be addressed.This review highlights the current application status of cell reprogramming in the treatment of Parkinson’s disease,focusing on the use of induced pluripotent stem cells in cell replacement therapy,including preclinical animal models and progress in clinical research.The review also discusses the advancements in direct reprogramming of lineage cells in the treatment of Parkinson’s disease,as well as the controversy surrounding in vivo reprogramming.These findings suggest that cell reprogramming may hold great promise as a potential strategy for treating Parkinson’s disease.展开更多
Ischemic stroke is a leading cause of death and disability worldwide,with an increasing trend and tendency for onset at a younger age.China,in particular,bears a high burden of stroke cases.In recent years,the inflamm...Ischemic stroke is a leading cause of death and disability worldwide,with an increasing trend and tendency for onset at a younger age.China,in particular,bears a high burden of stroke cases.In recent years,the inflammatory response after stroke has become a research hotspot:understanding the role of inflammatory response in tissue damage and repair following ischemic stroke is an important direction for its treatment.This review summarizes several major cells involved in the inflammatory response following ischemic stroke,including microglia,neutrophils,monocytes,lymphocytes,and astrocytes.Additionally,we have also highlighted the recent progress in various treatments for ischemic stroke,particularly in the field of stem cell therapy.Overall,understanding the complex interactions between inflammation and ischemic stroke can provide valuable insights for developing treatment strategies and improving patient outcomes.Stem cell therapy may potentially become an important component of ischemic stroke treatment.展开更多
In this editorial,we comment on the article published in the recent issue of the World Journal of Stem Cells.They focus on stem cell preconditioning to prevent ferroptosis by modulating the cystathionineγ-lyase/hydro...In this editorial,we comment on the article published in the recent issue of the World Journal of Stem Cells.They focus on stem cell preconditioning to prevent ferroptosis by modulating the cystathionineγ-lyase/hydrogen sulfide(H_(2)S)pathway as a novel approach to treat vascular disorders,particularly pulmonary hypertension.Preconditioned stem cells are gaining popularity in regenerative medicine due to their unique ability to survive by resisting the harsh,unfavorable microenvironment of the injured tissue.They also secrete various paracrine factors against apoptosis,necrosis,and ferroptosis to enhance cell survival.Ferroptosis,a regulated form of cell death characterized by iron accumulation and oxidative stress,has been implicated in various pathologies encompassing dege-nerative disorders to cancer.The lipid peroxidation cascade initiates and sustains ferroptosis,generating many reactive oxygen species that attack and damage multiple cellular structures.Understanding these intertwined mechanisms provi-des significant insights into developing therapeutic modalities for ferroptosis-related diseases.This editorial primarily discusses stem cell preconditioning in modulating ferroptosis,focusing on the cystathionase gamma/H_(2)S ferroptosis pathway.Ferroptosis presents a significant challenge in mesenchymal stem cell(MSC)-based therapies;hence,the emerging role of H_(2)S/cystathionase gamma/H_(2) S signaling in abrogating ferroptosis provides a novel option for therapeutic intervention.Further research into understanding the precise mechanisms of H_(2)S-mediated cytoprotection against ferroptosis is warranted to enhance the thera-peutic potential of MSCs in clinical settings,particularly vascular disorders.展开更多
Parkinson’s disease is chara cterized by the loss of dopaminergic neurons in the substantia nigra pars com pacta,and although restoring striatal dopamine levels may improve symptoms,no treatment can cure or reve rse ...Parkinson’s disease is chara cterized by the loss of dopaminergic neurons in the substantia nigra pars com pacta,and although restoring striatal dopamine levels may improve symptoms,no treatment can cure or reve rse the disease itself.Stem cell therapy has a regenerative effect and is being actively studied as a candidate for the treatment of Parkinson’s disease.Mesenchymal stem cells are considered a promising option due to fewer ethical concerns,a lower risk of immune rejection,and a lower risk of teratogenicity.We performed a meta-analysis to evaluate the therapeutic effects of mesenchymal stem cells and their derivatives on motor function,memory,and preservation of dopamine rgic neurons in a Parkinson’s disease animal model.We searched bibliographic databases(PubMed/MEDLINE,Embase,CENTRAL,Scopus,and Web of Science)to identify articles and included only pee r-reviewed in vivo interve ntional animal studies published in any language through J une 28,2023.The study utilized the random-effect model to estimate the 95%confidence intervals(CI)of the standard mean differences(SMD)between the treatment and control groups.We use the systematic review center for laboratory animal expe rimentation’s risk of bias tool and the collaborative approach to meta-analysis and review of animal studies checklist for study quality assessment.A total of 33studies with data from 840 Parkinson’s disease model animals were included in the meta-analysis.Treatment with mesenchymal stem cells significantly improved motor function as assessed by the amphetamine-induced rotational test.Among the stem cell types,the bone marrow MSCs with neurotrophic factor group showed la rgest effect size(SMD[95%CI]=-6.21[-9.50 to-2.93],P=0.0001,I^(2)=0.0%).The stem cell treatment group had significantly more tyrosine hydroxylase positive dopamine rgic neurons in the striatum([95%CI]=1.04[0.59 to 1.49],P=0.0001,I^(2)=65.1%)and substantia nigra(SMD[95%CI]=1.38[0.89 to 1.87],P=0.0001,I^(2)=75.3%),indicating a protective effect on dopaminergic neurons.Subgroup analysis of the amphetamine-induced rotation test showed a significant reduction only in the intracranial-striatum route(SMD[95%CI]=-2.59[-3.25 to-1.94],P=0.0001,I^(2)=74.4%).The memory test showed significant improvement only in the intravenous route(SMD[95%CI]=4.80[1.84 to 7.76],P=0.027,I^(2)=79.6%).Mesenchymal stem cells have been shown to positively impact motor function and memory function and protect dopaminergic neurons in preclinical models of Parkinson’s disease.Further research is required to determine the optimal stem cell types,modifications,transplanted cell numbe rs,and delivery methods for these protocols.展开更多
Ischemic stroke is a major cause of mortality and disability worldwide,with limited treatment options available in clinical practice.The emergence of stem cell therapy has provided new hope to the field of stroke trea...Ischemic stroke is a major cause of mortality and disability worldwide,with limited treatment options available in clinical practice.The emergence of stem cell therapy has provided new hope to the field of stroke treatment via the restoration of brain neuron function.Exogenous neural stem cells are beneficial not only in cell replacement but also through the bystander effect.Neural stem cells regulate multiple physiological responses,including nerve repair,endogenous regeneration,immune function,and blood-brain barrier permeability,through the secretion of bioactive substances,including extracellular vesicles/exosomes.However,due to the complex microenvironment of ischemic cerebrovascular events and the low survival rate of neural stem cells following transplantation,limitations in the treatment effect remain unresolved.In this paper,we provide a detailed summary of the potential mechanisms of neural stem cell therapy for the treatment of ischemic stroke,review current neural stem cell therapeutic strategies and clinical trial results,and summarize the latest advancements in neural stem cell engineering to improve the survival rate of neural stem cells.We hope that this review could help provide insight into the therapeutic potential of neural stem cells and guide future scientific endeavors on neural stem cells.展开更多
Glaucoma,characterized by a degenerative loss of retinal ganglion cells,is the second leading cause of blindness worldwide.There is currently no cure for vision loss in glaucoma because retinal ganglion cells do not r...Glaucoma,characterized by a degenerative loss of retinal ganglion cells,is the second leading cause of blindness worldwide.There is currently no cure for vision loss in glaucoma because retinal ganglion cells do not regenerate and are not replaced after injury.Human stem cell-derived retinal ganglion cell transplant is a potential therapeutic strategy for retinal ganglion cell degenerative diseases.In this review,we first discuss a 2D protocol for retinal ganglion cell differentiation from human stem cell culture,including a rapid protocol that can generate retinal ganglion cells in less than two weeks and focus on their transplantation outcomes.Next,we discuss using 3D retinal organoids for retinal ganglion cell transplantation,comparing cell suspensions and clusters.This review provides insight into current knowledge on human stem cell-derived retinal ganglion cell differentiation and transplantation,with an impact on the field of regenerative medicine and especially retinal ganglion cell degenerative diseases such as glaucoma and other optic neuropathies.展开更多
BACKGROUND Clear cell sarcoma(CCS)is a rare soft-tissue sarcoma.The most common metastatic sites for CCS are the lungs,bones and brain.CCS is highly invasive and mainly metastasizes to the lung,followed by the bone an...BACKGROUND Clear cell sarcoma(CCS)is a rare soft-tissue sarcoma.The most common metastatic sites for CCS are the lungs,bones and brain.CCS is highly invasive and mainly metastasizes to the lung,followed by the bone and brain;however,pancreatic metastasis is relatively rare.CASE SUMMARY We report on a rare case of CCS with pancreatic metastasis in a 47-year-old man.The patient had a relevant medical history 3 years ago,with abdominal pain as the main clinical manifestation.No abnormalities were observed on physical examination and the tumor was found on abdominal computed tomography.Based on the medical history and postoperative pathology,the patient was diagnosed with CCS with pancreatic metastasis.The patient was successfully treated with surgical interventions,including distal pancreatectomy and sple-nectomy.CONCLUSION This report summarizes the available treatment modalities for CCS and the importance of regular postoperative follow-up for patients with CCS.展开更多
Recent studies have demonstrated that neuroplasticity,such as synaptic plasticity and neurogenesis,exists throughout the normal lifespan but declines with age and is significantly impaired in individuals with Alzheime...Recent studies have demonstrated that neuroplasticity,such as synaptic plasticity and neurogenesis,exists throughout the normal lifespan but declines with age and is significantly impaired in individuals with Alzheimer’s disease.Hence,promoting neuroplasticity may represent an effective strategy with which Alzheimer’s disease can be alleviated.Due to their significant ability to self-renew,differentiate,and migrate,neural stem cells play an essential role in reversing synaptic and neuronal damage,reducing the pathology of Alzheimer’s disease,including amyloid-β,tau protein,and neuroinflammation,and secreting neurotrophic factors and growth factors that are related to plasticity.These events can promote synaptic plasticity and neurogenesis to repair the microenvironment of the mammalian brain.Consequently,neural stem cells are considered to represent a potential regenerative therapy with which to improve Alzheimer’s disease and other neurodegenerative diseases.In this review,we discuss how neural stem cells regulate neuroplasticity and optimize their effects to enhance their potential for treating Alzheimer’s disease in the clinic.展开更多
文摘BACKGROUND: Interleukin-18 (IL-18), a pro-inflamma- tory cytokine that induces interferon-γ (IFN-γ) production in T cells and natural killer cells, plays a critical role in the T-lymphocyte helper type 1 ( Th1) response. This study was designed to explore the effect of IL-18 on peripheral blood mononuclear cells ( PBMCs) derived from chronic hepatitis B (CHB) and on hepatitis B virus (HBV) DNA released by HepG2.2.15 cell lines, which were transfected with hepatitis B virus gene in vitro. METHODS: PBMCs isolated from 25 healthy people and 25 patients with CHB were stimulated with HBcAg and IL-18 of various concentrations for 72 hours. The levels of IFN-γ in the supernatants of cultured PBMCs were determined by ELISA. After the stimulation of IL-18 of various concentra- tions, PBMCs derived from one patient were co-cultured for 96 hours with HepG2. 2. 15 cells which had been cul- tured for 24 hours, and then the supernatants were collected by centrifugation and used for HBV DNA quantitative as- say. RESULTS: When PBMCs were stimulated by HBcAg and IL-18 at various concentrations, the levels of IFN-γ in the supernatants of CHB groups were much higher than those in normal control groups, at 0.2 ng/ml: t =11.70, P< 0.01; at 1.0 ng/ml: t =16.19, P<0.01; and at5.0 ng/ml: t =20.12, P <0.01. In the CHB groups, the levels of IFN-γ in the supernatants of PBMCs stimulated by HBcAg alone were lower than both those stimulated by HBcAg and EL-18 at various concentrations and those stimulated by HBcAg and EL-18 (5.0 ng/ml) together with EL-12 (mild: t = 2.20, P<0.05; moderate; t=2.97, P<0.05; severe; t = 0.66, P >0.05). The content of HBV DNA in the superna- tant of co-cultivation of HepG2. 2. 15 cells and PBMCs without stimulated materials was higher than that stimula-ted by HBcAg and EL-18 at various concentrations of HBc- Ag and IL-18 together with IL-12/IFN-α1lb. CONCLUSION: DL-18 can induce IFN-γ secretion and pro- bably play a key role in the modulation of both innate and adaptive immunity. It has implications in improving im- munoregulatory effect and increasing the ability of immune cells to kill cells infected by virus.
基金The Youth Foundation of Heilongjiang Province,No.QC06C061the Foundation of Education Department,Heilongjiang Province,No.11521089
文摘AIM: To observe the inhibition of hepatitis B virus (HBV) replication and expression in HepG2.2.15 cells by combination of small interfering RNAs (siRNAs). METHODS: Recombinant plasmid psiI-HBV was constructed and transfected into HepG2.2.15 cells. At 48 h, 72 h and 96 h after transfection, culture media were collected and cells were harvested for HBV replication assay. HBsAg and HBeAg in the cell culture medium were detected by enzyme-linked immunoadsorbent assay (ELISA). Intracellular viral DNA and covalently closed circular DNA (cccDNA) were quantified by real-time polymerase chain reaction (PCR). HBV viral mRNA was reverse transcribed and quantified by reverse-transcript PCR (RT-PCR). RESULTS: siRNAs showed marked anti-HBV effects. siRNAs could specifically inhibit the expression of HBsAg and the replication of HBV DNA in a dosedependent manner. Furthermore, combination of siRNAs, compared with individual use of each siRNA, exerted a stronger inhibition on antigen expression and viral replication. More importantlycombination of siRNAs significantly suppressed HBV cccDNA amplification. CONCLUSION: Combination of siRNAs mediates a stronger inhibition on viral replication and antigenexpression in HepG2.2.15 cells, especially on cccDNA amplification.
基金Grants from the National Natural Science Foundation of China, Key Program, No. 30330680
文摘AIM: To investigate the antiviral effect of beta-L- enantiomer of 2;3'-didehydro-2',3″-dideoxyadenosine (13-L-D4A) on 2.2.15 cells transfected with the hepatitis B virus (HBV) genome.METHODS: Lamivudine (3TC) as a positive control. Then, HBV DNA in treated 2.2.15 cells and the Hepatitis B surface antigen (HBsAg) in the culture supernatants were detected to determine the inhibitory effect of β-L- D4A. At the same time, 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) was used to detect the survival ratio of 2.2.15 cells.RESULTS: β-L-D4A has a dose-dependent inhibitory effect on HBV DNA replication; this effect was apparent when the concentration was above 1 mol/L. When β-L- D4A was at the highest concentration, 100 mol/L, the HBsAg inhibition ratio was above 50%. The Therapeutic index (TI) of β-L-D4A was above 2.1.CONCLUSION: β-L-D4A has a dose-dependent inhibitory effect on the replication of HBV DNA and the secretion of HBsAg at low toxicity,
基金Supported by the MajorPrograms of Health Bureau of Zhejiang Province,No.2002ZD007 and the National Natural Science Foundation of China,No.30371270 and the Major Programs of Department of Science and Technology of Zhejiang Province,No.2003C13015
文摘AIM: To investigate the role of human La protein in HBV mRNA expression.METHODS: Three human La protein (hLa) specific siRNA expression cassettes (SECs) containing U6+1 promoter were prepared via one-step overlapping extension PCR. After transfection with SECs into HepG2 cells, inhibition effects on hLa expression were analyzed by semi-quantitative RT-PCR and Western blotting. Then, effective SECs were screened out and transfected into 2.2.15 cells, a stable HBV-producing cell line. HBV surface antigen(HBsAg) and e antigen (HBeAg) secretions into culture media were detected by microparticle enzyme immunoassay (MEIA) and HBs and HBe mRNA levels were analyzed by semi-quantitative RT-PCR.RESULTS: SEC products containing U6+1 snRNA promoter,and 3 sites of hLa mRNA specific siRNA were obtained successfully by one-step overlapping extension PCR and could be directly transfected into HepG2 cells, resulting in inhibition of La protein expression in both mRNA and protein levels, among which U6+l-hLa833 was the most efficient,which reduced 18.6-fold mRNA and 89% protein level respectively. In 2.2.15 cells, U6+l-hLa833 was also efficient on inhibition of hLa expression. Furthermore, semi-quantitative RT-PCR showed that HI3s and HBe mRNA levels were significantly decreased by 8-and 66-fold in U6+l-hLa833 transfected cells compared to control. Accordingly, HBsAg and HBeAg secretions were decreased partly posttransfection with SECs.CONCLUSION: PCR-based SECs can be used to mediate RNAi in mammalian cells and provide a novel approach to study the function of La protein. The inhibition of La protein expression can result in a significant decrease ofHBV mRNA, which implies that the hLa protein is also involved HBV RNA metabolism as one of the HBV RNA-stabilizing factors in human cells.
基金supported by grants from the National Major Science and Technology Special Project for Infectious Diseases of China (No. 2008ZX10002-011)
文摘This study investigated the expression profiles of IL-10 gene in three human hepatoma cell lines including Huh7, HepG2, and HepG2 transfected with a plasmid containing hepatitis B virus (HBV) named HepG2.2.15. RT-PCR analysis demonstrated that IL-10 message RNA was absent in HepG2 and Huh7 cells, whereas it was present in HepG2.2.15 cells, which was consistent with ELISA result. Furthermore, except for lamivudine other antiviral treatments did not significantly decrease the HBV DNA level in HepG2.2.15 cells, while they had different effects on the expression of IL-10 protein, although stimulation by LPS had no significant effect. In addition, except for poly(I:C), the other treatments decreased the expression of IL-10 protein to different degrees, but had no sig-nificant effects on the expression of NF-κB and MyD88. Meanwhile, all treatments we used had effect on the expression of STAT1. In conclusion, IL-10 was expressed in HepG2.2.15 cells and STAT1 pathway might be involved in the regulation of IL-10 expression in HepG2.2.15 cells, but it was not the sole pathway, the exact mechanism warrants further study.
文摘AIM: To explore the anti-hepatitis B virus (HBV) effects of Boehmeria nivea (B. nivea) root extract (BNE) by using the HepG2 2.2.15 cell model system. METHODS: Hepatitis B surface antigen (HBsAg), hepatitis B virus e antigen (HBeAg), and HBV DNA were measured by using ELISA and real-time PCR, respectively. Viral DNA replication and RNA expression were determined by using Southern and Northern blot, respectively. RESULTS: In HepG2 2.2.15 cells, HBeAg (60%, P < 0.01) and particle-associated HBV DNA (> 99%, P < 0.01) secretion into supernatant were significantly inhibited by BNE at a dose of 100 mg/L, whereas the HBsAg was not inhibited. With different doses of BNE, the reduced HBeAg was correlated with the inhibition of HBV DNA. The anti-HBV effect of BNE was not caused by its cytotoxicity to cells or inhibition of viral DNA replication and RNA expression. CONCLUSION: BNE could effectively reduce the HBV production and its anti-HBV machinery might differ from the nucleoside analogues.
基金Supported by PhD Foundation of Education Ministry, China, No. 2005006Youth Foundation of Heilongjiang Province, No. QC060061Foundation of Health Hall, Heilongjiang Province, No. 2005-009
文摘AIM: To observe the inhibition of hepatitis B virus (HBV) replication and expression by combination of siRNA and lamivudine in HepG2.2.15 cells. METHODS: Recombinant plasmid psil-HBV was constructed and transfected into HepG2.2.15 cells. The transfected cells were cultured in lamivudine-containing medium (0.05 μmol/L) and harvested at 48, 72 and 96 h. The concentration of HBeAg and HBsAg was determined using ELISA. HBV DNA replication was examined by real- time PCR and the level of HBV mRNA was measured by RT-PCR. RESULTS: In HepG2.2.15 cells treated with combination of siRNA and lamivudine, the secretion of HBeAg and HBsAg into the supernatant was found to be inhibited by 91.80% and 82.40% (2.89 ± 0.48 vs 11.73 ± 0.38, P < 0.05; 4.59 ± 0.57 vs 16.25 ± 0.48, P < 0.05) at 96 h, respectively; the number of HBV DNA copies within culture medium was also significantly decreased at 96 h (1.04 ± 0.26 vs 8.35 ± 0.33, P < 0.05). Moreover, mRNA concentration in HepG2.2.15 cells treated with combination of siRNA and lamivudine was obviously lower compared to those treated either with siRNA or lamivudine (19.44 ± 0.17 vs 33.27 ± 0.21 or 79.9 ± 0.13, P < 0.05). CONCLUSION: Combination of siRNA and lamivudine is more effective in inhibiting HBV replication as compared to the single use of siRNA or lamivudine in HepG2.2.15 cells.
基金Supported by The Spring City Plan:The High-level Talent Promotion and Training Project of Kunming,No.2022SCP002The Research of Key Techniques and Application of Liver-Kidney Organ Transplantation,No.202302AA310018.
文摘BACKGROUND The role of exosomes derived from HepG2.2.15 cells,which express hepatitis B virus(HBV)-related proteins,in triggering the activation of LX2 liver stellate cells and promoting liver fibrosis and cell proliferation remains elusive.The focus was on comprehending the relationship and influence of differentially expressed microRNAs(DE-miRNAs)within these exosomes.AIM To elucidate the effect of exosomes derived from HepG2.2.15 cells on the activation of hepatic stellate cell(HSC)LX2 and the progression of liver fibrosis.METHODS Exosomes from HepG2.2.15 cells,which express HBV-related proteins,were isolated from parental HepG2 and WRL68 cells.Western blotting was used to confirm the presence of the exosomal marker protein CD9.The activation of HSCs was assessed using oil red staining,whereas DiI staining facilitated the observation of exosomal uptake by LX2 cells.Additionally,we evaluated LX2 cell proliferation and fibrosis marker expression using 5-ethynyl-2′-deoxyuracil staining and western blotting,respectively.DE-miRNAs were analyzed using DESeq2.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways were used to annotate the target genes of DE-miRNAs.RESULTS Exosomes from HepG2.2.15 cells were found to induced activation and enhanced proliferation and fibrosis in LX2 cells.A total of 27 miRNAs were differentially expressed in exosomes from HepG2.2.15 cells.GO analysis indicated that these DE-miRNA target genes were associated with cell differentiation,intracellular signal transduction,negative regulation of apoptosis,extracellular exosomes,and RNA binding.KEGG pathway analysis highlighted ubiquitin-mediated proteolysis,the MAPK signaling pathway,viral carcinogenesis,and the toll-like receptor signaling pathway,among others,as enriched in these targets.CONCLUSION These findings suggest that exosomes from HepG2.2.15 cells play a substantial role in the activation,proliferation,and fibrosis of LX2 cells and that DE-miRNAs within these exosomes contribute to the underlying mechanisms.
基金supported by the National Natural Science Foundation of China,No.82171380(to CD)Jiangsu Students’Platform for Innovation and Entrepreneurship Training Program,No.202110304098Y(to DJ)。
文摘Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and the generation of new scars can make it very difficult for the impaired nervous system to restore its neural functionality.Traditional treatments can only alleviate secondary injuries but cannot fundamentally repair the spinal cord.Consequently,there is a critical need to develop new treatments to promote functional repair after spinal cord injury.Over recent years,there have been seve ral developments in the use of stem cell therapy for the treatment of spinal cord injury.Alongside significant developments in the field of tissue engineering,three-dimensional bioprinting technology has become a hot research topic due to its ability to accurately print complex structures.This led to the loading of three-dimensional bioprinting scaffolds which provided precise cell localization.These three-dimensional bioprinting scaffolds co uld repair damaged neural circuits and had the potential to repair the damaged spinal cord.In this review,we discuss the mechanisms underlying simple stem cell therapy,the application of different types of stem cells for the treatment of spinal cord injury,and the different manufa cturing methods for three-dimensional bioprinting scaffolds.In particular,we focus on the development of three-dimensional bioprinting scaffolds for the treatment of spinal cord injury.
基金supported by the National Natural Science Foundation of China,No.31960120Yunnan Science and Technology Talent and Platform Plan,No.202105AC160041(both to ZW).
文摘Parkinson’s disease is typically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta.Many studies have been performed based on the supplementation of lost dopaminergic neurons to treat Parkinson’s disease.The initial strategy for cell replacement therapy used human fetal ventral midbrain and human embryonic stem cells to treat Parkinson’s disease,which could substantially alleviate the symptoms of Parkinson’s disease in clinical practice.However,ethical issues and tumor formation were limitations of its clinical application.Induced pluripotent stem cells can be acquired without sacrificing human embryos,which eliminates the huge ethical barriers of human stem cell therapy.Another widely considered neuronal regeneration strategy is to directly reprogram fibroblasts and astrocytes into neurons,without the need for intermediate proliferation states,thus avoiding issues of immune rejection and tumor formation.Both induced pluripotent stem cells and direct reprogramming of lineage cells have shown promising results in the treatment of Parkinson’s disease.However,there are also ethical concerns and the risk of tumor formation that need to be addressed.This review highlights the current application status of cell reprogramming in the treatment of Parkinson’s disease,focusing on the use of induced pluripotent stem cells in cell replacement therapy,including preclinical animal models and progress in clinical research.The review also discusses the advancements in direct reprogramming of lineage cells in the treatment of Parkinson’s disease,as well as the controversy surrounding in vivo reprogramming.These findings suggest that cell reprogramming may hold great promise as a potential strategy for treating Parkinson’s disease.
基金supported by grants from the Major Program of National Key Research and Development Project,Nos.2020YFA0112600(to ZH)the National Natural Science Foundation of China,No.82171270(to ZL)+5 种基金Public Service Platform for Artificial Intelligence Screening and Auxiliary Diagnosis for the Medical and Health Industry,Ministry of Industry and Information Technology of the People’s Republic of China,No.2020-0103-3-1(to ZL)the Natural Science Foundation of Beijing,No.Z200016(to ZL)Beijing Talents Project,No.2018000021223ZK03(to ZL)Beijing Municipal Committee of Science and Technology,No.Z201100005620010(to ZL)CAMS Innovation Fund for Medical Sciences,No.2019-I2M-5-029(to YW)Shanghai Engineering Research Center of Stem Cells Translational Medicine,No.20DZ2255100(to ZH).
文摘Ischemic stroke is a leading cause of death and disability worldwide,with an increasing trend and tendency for onset at a younger age.China,in particular,bears a high burden of stroke cases.In recent years,the inflammatory response after stroke has become a research hotspot:understanding the role of inflammatory response in tissue damage and repair following ischemic stroke is an important direction for its treatment.This review summarizes several major cells involved in the inflammatory response following ischemic stroke,including microglia,neutrophils,monocytes,lymphocytes,and astrocytes.Additionally,we have also highlighted the recent progress in various treatments for ischemic stroke,particularly in the field of stem cell therapy.Overall,understanding the complex interactions between inflammation and ischemic stroke can provide valuable insights for developing treatment strategies and improving patient outcomes.Stem cell therapy may potentially become an important component of ischemic stroke treatment.
文摘In this editorial,we comment on the article published in the recent issue of the World Journal of Stem Cells.They focus on stem cell preconditioning to prevent ferroptosis by modulating the cystathionineγ-lyase/hydrogen sulfide(H_(2)S)pathway as a novel approach to treat vascular disorders,particularly pulmonary hypertension.Preconditioned stem cells are gaining popularity in regenerative medicine due to their unique ability to survive by resisting the harsh,unfavorable microenvironment of the injured tissue.They also secrete various paracrine factors against apoptosis,necrosis,and ferroptosis to enhance cell survival.Ferroptosis,a regulated form of cell death characterized by iron accumulation and oxidative stress,has been implicated in various pathologies encompassing dege-nerative disorders to cancer.The lipid peroxidation cascade initiates and sustains ferroptosis,generating many reactive oxygen species that attack and damage multiple cellular structures.Understanding these intertwined mechanisms provi-des significant insights into developing therapeutic modalities for ferroptosis-related diseases.This editorial primarily discusses stem cell preconditioning in modulating ferroptosis,focusing on the cystathionase gamma/H_(2)S ferroptosis pathway.Ferroptosis presents a significant challenge in mesenchymal stem cell(MSC)-based therapies;hence,the emerging role of H_(2)S/cystathionase gamma/H_(2) S signaling in abrogating ferroptosis provides a novel option for therapeutic intervention.Further research into understanding the precise mechanisms of H_(2)S-mediated cytoprotection against ferroptosis is warranted to enhance the thera-peutic potential of MSCs in clinical settings,particularly vascular disorders.
文摘Parkinson’s disease is chara cterized by the loss of dopaminergic neurons in the substantia nigra pars com pacta,and although restoring striatal dopamine levels may improve symptoms,no treatment can cure or reve rse the disease itself.Stem cell therapy has a regenerative effect and is being actively studied as a candidate for the treatment of Parkinson’s disease.Mesenchymal stem cells are considered a promising option due to fewer ethical concerns,a lower risk of immune rejection,and a lower risk of teratogenicity.We performed a meta-analysis to evaluate the therapeutic effects of mesenchymal stem cells and their derivatives on motor function,memory,and preservation of dopamine rgic neurons in a Parkinson’s disease animal model.We searched bibliographic databases(PubMed/MEDLINE,Embase,CENTRAL,Scopus,and Web of Science)to identify articles and included only pee r-reviewed in vivo interve ntional animal studies published in any language through J une 28,2023.The study utilized the random-effect model to estimate the 95%confidence intervals(CI)of the standard mean differences(SMD)between the treatment and control groups.We use the systematic review center for laboratory animal expe rimentation’s risk of bias tool and the collaborative approach to meta-analysis and review of animal studies checklist for study quality assessment.A total of 33studies with data from 840 Parkinson’s disease model animals were included in the meta-analysis.Treatment with mesenchymal stem cells significantly improved motor function as assessed by the amphetamine-induced rotational test.Among the stem cell types,the bone marrow MSCs with neurotrophic factor group showed la rgest effect size(SMD[95%CI]=-6.21[-9.50 to-2.93],P=0.0001,I^(2)=0.0%).The stem cell treatment group had significantly more tyrosine hydroxylase positive dopamine rgic neurons in the striatum([95%CI]=1.04[0.59 to 1.49],P=0.0001,I^(2)=65.1%)and substantia nigra(SMD[95%CI]=1.38[0.89 to 1.87],P=0.0001,I^(2)=75.3%),indicating a protective effect on dopaminergic neurons.Subgroup analysis of the amphetamine-induced rotation test showed a significant reduction only in the intracranial-striatum route(SMD[95%CI]=-2.59[-3.25 to-1.94],P=0.0001,I^(2)=74.4%).The memory test showed significant improvement only in the intravenous route(SMD[95%CI]=4.80[1.84 to 7.76],P=0.027,I^(2)=79.6%).Mesenchymal stem cells have been shown to positively impact motor function and memory function and protect dopaminergic neurons in preclinical models of Parkinson’s disease.Further research is required to determine the optimal stem cell types,modifications,transplanted cell numbe rs,and delivery methods for these protocols.
基金supported by the National Natural Science Foundation of China,No.81971105(to ZNG)the Science and Technology Department of Jilin Province,No.YDZJ202201ZYTS677(to ZNG)+3 种基金Talent Reserve Program of the First Hospital of Jilin University,No.JDYYCB-2023002(to ZNG)the Norman Bethune Health Science Center of Jilin University,No.2022JBGS03(to YY)Science and Technology Department of Jilin Province,Nos.YDZJ202302CXJD061,20220303002SF(to YY)Jilin Provincial Key Laboratory,No.YDZJ202302CXJD017(to YY).
文摘Ischemic stroke is a major cause of mortality and disability worldwide,with limited treatment options available in clinical practice.The emergence of stem cell therapy has provided new hope to the field of stroke treatment via the restoration of brain neuron function.Exogenous neural stem cells are beneficial not only in cell replacement but also through the bystander effect.Neural stem cells regulate multiple physiological responses,including nerve repair,endogenous regeneration,immune function,and blood-brain barrier permeability,through the secretion of bioactive substances,including extracellular vesicles/exosomes.However,due to the complex microenvironment of ischemic cerebrovascular events and the low survival rate of neural stem cells following transplantation,limitations in the treatment effect remain unresolved.In this paper,we provide a detailed summary of the potential mechanisms of neural stem cell therapy for the treatment of ischemic stroke,review current neural stem cell therapeutic strategies and clinical trial results,and summarize the latest advancements in neural stem cell engineering to improve the survival rate of neural stem cells.We hope that this review could help provide insight into the therapeutic potential of neural stem cells and guide future scientific endeavors on neural stem cells.
基金supported by NIH Core Grants P30-EY008098the Eye and Ear Foundation of Pittsburghunrestricted grants from Research to Prevent Blindness,New York,NY,USA(to KCC)。
文摘Glaucoma,characterized by a degenerative loss of retinal ganglion cells,is the second leading cause of blindness worldwide.There is currently no cure for vision loss in glaucoma because retinal ganglion cells do not regenerate and are not replaced after injury.Human stem cell-derived retinal ganglion cell transplant is a potential therapeutic strategy for retinal ganglion cell degenerative diseases.In this review,we first discuss a 2D protocol for retinal ganglion cell differentiation from human stem cell culture,including a rapid protocol that can generate retinal ganglion cells in less than two weeks and focus on their transplantation outcomes.Next,we discuss using 3D retinal organoids for retinal ganglion cell transplantation,comparing cell suspensions and clusters.This review provides insight into current knowledge on human stem cell-derived retinal ganglion cell differentiation and transplantation,with an impact on the field of regenerative medicine and especially retinal ganglion cell degenerative diseases such as glaucoma and other optic neuropathies.
文摘BACKGROUND Clear cell sarcoma(CCS)is a rare soft-tissue sarcoma.The most common metastatic sites for CCS are the lungs,bones and brain.CCS is highly invasive and mainly metastasizes to the lung,followed by the bone and brain;however,pancreatic metastasis is relatively rare.CASE SUMMARY We report on a rare case of CCS with pancreatic metastasis in a 47-year-old man.The patient had a relevant medical history 3 years ago,with abdominal pain as the main clinical manifestation.No abnormalities were observed on physical examination and the tumor was found on abdominal computed tomography.Based on the medical history and postoperative pathology,the patient was diagnosed with CCS with pancreatic metastasis.The patient was successfully treated with surgical interventions,including distal pancreatectomy and sple-nectomy.CONCLUSION This report summarizes the available treatment modalities for CCS and the importance of regular postoperative follow-up for patients with CCS.
基金supported by the National Natural Science Foundation of China,No.82074533(to LZ).
文摘Recent studies have demonstrated that neuroplasticity,such as synaptic plasticity and neurogenesis,exists throughout the normal lifespan but declines with age and is significantly impaired in individuals with Alzheimer’s disease.Hence,promoting neuroplasticity may represent an effective strategy with which Alzheimer’s disease can be alleviated.Due to their significant ability to self-renew,differentiate,and migrate,neural stem cells play an essential role in reversing synaptic and neuronal damage,reducing the pathology of Alzheimer’s disease,including amyloid-β,tau protein,and neuroinflammation,and secreting neurotrophic factors and growth factors that are related to plasticity.These events can promote synaptic plasticity and neurogenesis to repair the microenvironment of the mammalian brain.Consequently,neural stem cells are considered to represent a potential regenerative therapy with which to improve Alzheimer’s disease and other neurodegenerative diseases.In this review,we discuss how neural stem cells regulate neuroplasticity and optimize their effects to enhance their potential for treating Alzheimer’s disease in the clinic.