Neuromorphic computing systems,which mimic the operation of neurons and synapses in the human brain,are seen as an appealing next-generation computing method due to their strong and efficient computing abilities.Two-d...Neuromorphic computing systems,which mimic the operation of neurons and synapses in the human brain,are seen as an appealing next-generation computing method due to their strong and efficient computing abilities.Two-dimensional (2D) materials with dangling bond-free surfaces and atomic-level thicknesses have emerged as promising candidates for neuromorphic computing hardware.As a result,2D neuromorphic devices may provide an ideal platform for developing multifunctional neuromorphic applications.Here,we review the recent neuromorphic devices based on 2D material and their multifunctional applications.The synthesis and next micro–nano fabrication methods of 2D materials and their heterostructures are first introduced.The recent advances of neuromorphic 2D devices are discussed in detail using different operating principles.More importantly,we present a review of emerging multifunctional neuromorphic applications,including neuromorphic visual,auditory,tactile,and nociceptive systems based on 2D devices.In the end,we discuss the problems and methods for 2D neuromorphic device developments in the future.This paper will give insights into designing 2D neuromorphic devices and applying them to the future neuromorphic systems.展开更多
The working environment of aerospace engines is extremely harsh with temperature exceeding 1700℃and accompanied by thermal coupling effects.In this condition,the materials employed in hypersonic aircraft undergo abla...The working environment of aerospace engines is extremely harsh with temperature exceeding 1700℃and accompanied by thermal coupling effects.In this condition,the materials employed in hypersonic aircraft undergo ablation issues,which can cause catastrophic accidents.Due to the excellent high-temperature stability and ablation resistance,HfC exhibits outstanding thermal expansion coefficient matching that of C/SiC composites.2.5D needle-punched C/SiC composites coated with HfC are prepared using a plasma spraying process,and a high-enthalpy arc-heated wind tunnel is employed to simulate the re-entry environment of aircraft at 8 Mach and an altitude of 32 km.The plasma-sprayed HfC-coated 2.5D needle-punched C/SiC composites are subjected to long-term dynamic testing,and their properties are investigated.Specifically,after the thermal assessment ablation experiment,the composite retains its overall structure and profile;the total mass ablation rate is 0.07445 g/s,the average linear ablation rate in the thickness direction is-0.0675μm/s,and the average linear ablation rate in the length direction is 13.907μm/s.Results verify that plasma-sprayed HfC coating exhibits excellent anti-oxidation and ablation resistance properties.Besides,the microstructure and ablation mechanism of the C/SiC composites are studied.It is believed that this work will offer guideline for the development of thermal protection materials and the assessment of structural thermal performance.展开更多
A solar-driven photoelectrochemical(PEC)cell is emerging as one of the promising clean hydrogen generation systems.Engineering of semiconductor heterojunctions and surface morphologies of photoelectrodes in a PEC cell...A solar-driven photoelectrochemical(PEC)cell is emerging as one of the promising clean hydrogen generation systems.Engineering of semiconductor heterojunctions and surface morphologies of photoelectrodes in a PEC cell has been a primitive approach to boost its performance.This study presents that a molybdenum disulfide(MoS_(2))nanoflakes photoanode on 3-dimensional(3D)porous carbon spun fabric(CSF)as a substrate effectively enhances hydrogen generations due to sufficiently enlarged surface area.MoS_(2)is grown on CSFs utilizing a hydrothermal method.Among three different MoS_(2)coating morphologies depending on the amount of MoS_(2)precursor and hydrothermal growth time,film shape MoS_(2)on CSFs had the largest surface area,exhibiting the highest photocurrent density of 26.48 mA/cm^(2)and the highest applied bias photon-to-current efficiency(ABPE)efficiency of 5.32%at 0.43 VRHE.Furthermore,with a two-step growth method of sputtering and a subsequent hydrothermal coating,continuous TiO_(2)/MoS_(20 heterojunctions on a porous CSF further promoted the photoelectrochemical performances due to their optimized bandgap alignments.Enlarged surface area,enhanced charge transfer,and utilization of visible light enable a highly efficient MoS_(2)/TiO_(2)/CSF photoanode with a photocurrent density of 33.81 mA/cm^(2)and an ABPE of 6.97%at 0.87 VRHE.The hydrogen generation amount of the PEC cell with MoS_(2)/TiO_(2)/CSF photoanode is 225.4μmol/L after light irradiation of 60 s.展开更多
基金supported by the Hunan Science Fund for Distinguished Young Scholars (2023JJ10069)the National Natural Science Foundation of China (52172169)。
文摘Neuromorphic computing systems,which mimic the operation of neurons and synapses in the human brain,are seen as an appealing next-generation computing method due to their strong and efficient computing abilities.Two-dimensional (2D) materials with dangling bond-free surfaces and atomic-level thicknesses have emerged as promising candidates for neuromorphic computing hardware.As a result,2D neuromorphic devices may provide an ideal platform for developing multifunctional neuromorphic applications.Here,we review the recent neuromorphic devices based on 2D material and their multifunctional applications.The synthesis and next micro–nano fabrication methods of 2D materials and their heterostructures are first introduced.The recent advances of neuromorphic 2D devices are discussed in detail using different operating principles.More importantly,we present a review of emerging multifunctional neuromorphic applications,including neuromorphic visual,auditory,tactile,and nociceptive systems based on 2D devices.In the end,we discuss the problems and methods for 2D neuromorphic device developments in the future.This paper will give insights into designing 2D neuromorphic devices and applying them to the future neuromorphic systems.
基金financially supported by the National Key R&D Program of China(No.2022YFB3-401900)the National Natural Science Foundation of China(No.U21A20134)the Shandong Provincial Natural Science Foundation(Excellent Young Fund,No.ZR2022YQ48).
文摘The working environment of aerospace engines is extremely harsh with temperature exceeding 1700℃and accompanied by thermal coupling effects.In this condition,the materials employed in hypersonic aircraft undergo ablation issues,which can cause catastrophic accidents.Due to the excellent high-temperature stability and ablation resistance,HfC exhibits outstanding thermal expansion coefficient matching that of C/SiC composites.2.5D needle-punched C/SiC composites coated with HfC are prepared using a plasma spraying process,and a high-enthalpy arc-heated wind tunnel is employed to simulate the re-entry environment of aircraft at 8 Mach and an altitude of 32 km.The plasma-sprayed HfC-coated 2.5D needle-punched C/SiC composites are subjected to long-term dynamic testing,and their properties are investigated.Specifically,after the thermal assessment ablation experiment,the composite retains its overall structure and profile;the total mass ablation rate is 0.07445 g/s,the average linear ablation rate in the thickness direction is-0.0675μm/s,and the average linear ablation rate in the length direction is 13.907μm/s.Results verify that plasma-sprayed HfC coating exhibits excellent anti-oxidation and ablation resistance properties.Besides,the microstructure and ablation mechanism of the C/SiC composites are studied.It is believed that this work will offer guideline for the development of thermal protection materials and the assessment of structural thermal performance.
基金supported by the KIST Institution Program(2E32634,2E33323,2E32942)Brain Pool program funded by the Ministry of Science and ICT through the NRF(2020H1D3A1A04080324)Cooperation foundation creation project through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(RS-2023-00239634).
文摘A solar-driven photoelectrochemical(PEC)cell is emerging as one of the promising clean hydrogen generation systems.Engineering of semiconductor heterojunctions and surface morphologies of photoelectrodes in a PEC cell has been a primitive approach to boost its performance.This study presents that a molybdenum disulfide(MoS_(2))nanoflakes photoanode on 3-dimensional(3D)porous carbon spun fabric(CSF)as a substrate effectively enhances hydrogen generations due to sufficiently enlarged surface area.MoS_(2)is grown on CSFs utilizing a hydrothermal method.Among three different MoS_(2)coating morphologies depending on the amount of MoS_(2)precursor and hydrothermal growth time,film shape MoS_(2)on CSFs had the largest surface area,exhibiting the highest photocurrent density of 26.48 mA/cm^(2)and the highest applied bias photon-to-current efficiency(ABPE)efficiency of 5.32%at 0.43 VRHE.Furthermore,with a two-step growth method of sputtering and a subsequent hydrothermal coating,continuous TiO_(2)/MoS_(20 heterojunctions on a porous CSF further promoted the photoelectrochemical performances due to their optimized bandgap alignments.Enlarged surface area,enhanced charge transfer,and utilization of visible light enable a highly efficient MoS_(2)/TiO_(2)/CSF photoanode with a photocurrent density of 33.81 mA/cm^(2)and an ABPE of 6.97%at 0.87 VRHE.The hydrogen generation amount of the PEC cell with MoS_(2)/TiO_(2)/CSF photoanode is 225.4μmol/L after light irradiation of 60 s.