Automatic crack detection of cement pavement chiefly benefits from the rapid development of deep learning,with convolutional neural networks(CNN)playing an important role in this field.However,as the performance of cr...Automatic crack detection of cement pavement chiefly benefits from the rapid development of deep learning,with convolutional neural networks(CNN)playing an important role in this field.However,as the performance of crack detection in cement pavement improves,the depth and width of the network structure are significantly increased,which necessitates more computing power and storage space.This limitation hampers the practical implementation of crack detection models on various platforms,particularly portable devices like small mobile devices.To solve these problems,we propose a dual-encoder-based network architecture that focuses on extracting more comprehensive fracture feature information and combines cross-fusion modules and coordinated attention mechanisms formore efficient feature fusion.Firstly,we use small channel convolution to construct shallow feature extractionmodule(SFEM)to extract low-level feature information of cracks in cement pavement images,in order to obtainmore information about cracks in the shallowfeatures of images.In addition,we construct large kernel atrous convolution(LKAC)to enhance crack information,which incorporates coordination attention mechanism for non-crack information filtering,and large kernel atrous convolution with different cores,using different receptive fields to extract more detailed edge and context information.Finally,the three-stage feature map outputs from the shallow feature extraction module is cross-fused with the two-stage feature map outputs from the large kernel atrous convolution module,and the shallow feature and detailed edge feature are fully fused to obtain the final crack prediction map.We evaluate our method on three public crack datasets:DeepCrack,CFD,and Crack500.Experimental results on theDeepCrack dataset demonstrate the effectiveness of our proposed method compared to state-of-the-art crack detection methods,which achieves Precision(P)87.2%,Recall(R)87.7%,and F-score(F1)87.4%.Thanks to our lightweight crack detectionmodel,the parameter count of the model in real-world detection scenarios has been significantly reduced to less than 2M.This advancement also facilitates technical support for portable scene detection.展开更多
In order to prevent possible casualties and economic loss, it is critical to accurate prediction of the Remaining Useful Life (RUL) in rail prognostics health management. However, the traditional neural networks is di...In order to prevent possible casualties and economic loss, it is critical to accurate prediction of the Remaining Useful Life (RUL) in rail prognostics health management. However, the traditional neural networks is difficult to capture the long-term dependency relationship of the time series in the modeling of the long time series of rail damage, due to the coupling relationship of multi-channel data from multiple sensors. Here, in this paper, a novel RUL prediction model with an enhanced pulse separable convolution is used to solve this issue. Firstly, a coding module based on the improved pulse separable convolutional network is established to effectively model the relationship between the data. To enhance the network, an alternate gradient back propagation method is implemented. And an efficient channel attention (ECA) mechanism is developed for better emphasizing the useful pulse characteristics. Secondly, an optimized Transformer encoder was designed to serve as the backbone of the model. It has the ability to efficiently understand relationship between the data itself and each other at each time step of long time series with a full life cycle. More importantly, the Transformer encoder is improved by integrating pulse maximum pooling to retain more pulse timing characteristics. Finally, based on the characteristics of the front layer, the final predicted RUL value was provided and served as the end-to-end solution. The empirical findings validate the efficacy of the suggested approach in forecasting the rail RUL, surpassing various existing data-driven prognostication techniques. Meanwhile, the proposed method also shows good generalization performance on PHM2012 bearing data set.展开更多
基于Windows Media技术的流媒体同步控制需要ASF的支持。现有方法要求直接修改ASF文件的头对象而不易编程实现。通过对比研究,提出了一种基于Windows Media Encoder编码器后处理过程间接修改ASF文件的方法,并探讨了该方法的基本原理。...基于Windows Media技术的流媒体同步控制需要ASF的支持。现有方法要求直接修改ASF文件的头对象而不易编程实现。通过对比研究,提出了一种基于Windows Media Encoder编码器后处理过程间接修改ASF文件的方法,并探讨了该方法的基本原理。实际系统中的成功应用证明了该方法能有效降低编程难度并易于集成,对实现流媒体同步控制具有一定的参考价值。展开更多
在flash cs6的默认情况下,Flash cs6只支持flv和f4v格式的视频.如果不是这种格式的视频,我们可以使用Flash cs6自带的视频转换组件Adobe Media Encoder将其他视频格式转换成FLV和F4V格式.本文主要讲解如何使用flash自带的Adobe Media En...在flash cs6的默认情况下,Flash cs6只支持flv和f4v格式的视频.如果不是这种格式的视频,我们可以使用Flash cs6自带的视频转换组件Adobe Media Encoder将其他视频格式转换成FLV和F4V格式.本文主要讲解如何使用flash自带的Adobe Media Encoder组件进行视频文件的转换,导入和使用.展开更多
In a satellite laser ranging telescope system, well-aligned encoders of the elevation and azimuth axes are essential for tracking objects. However, it is very difficult and time-consuming to correct the bias between t...In a satellite laser ranging telescope system, well-aligned encoders of the elevation and azimuth axes are essential for tracking objects. However, it is very difficult and time-consuming to correct the bias between the absolute-position indices of the encoders and the astronomical coordinates, especially in the absence of a finder scope for our system. To solve this problem, a method is presented based on the phenomenon that all stars move anti-clockwise around Polaris in the northern hemisphere. Tests of the proposed adjustment procedure in a satellite laser ranging (SLR)system demonstrated the effectiveness and the time saved by using the approach, which greatly facilitates the optimization of a trackin~ svstem.展开更多
Low cost and miniaturized rotary encoders are important in automatic and precise production. Presented here is a code called Single Track Cyclic Gray Code (STCGC) that is an image etched on a single circular track of ...Low cost and miniaturized rotary encoders are important in automatic and precise production. Presented here is a code called Single Track Cyclic Gray Code (STCGC) that is an image etched on a single circular track of a rotary encoder disk read by a group of even spread reading heads to provide a unique codeword for every angular position and features such that every two adjacent words differ in exactly one component, thus avoiding coarse error. The existing construction or combination methods are helpful but not sufficient in determining the period of the STCGC of large word length and the theoretical approach needs further development to extend the word length. Three principles, such as the seed combination, short code removal and ergodicity examination were put forward that suffice determination of the optimal period for such absolute rotary encoders using STCGC with even spread heads. The optimal periods of STCGC in 3 through 29 bit length were determined and listed.展开更多
基金supported by the National Natural Science Foundation of China(No.62176034)the Science and Technology Research Program of Chongqing Municipal Education Commission(No.KJZD-M202300604)the Natural Science Foundation of Chongqing(Nos.cstc2021jcyj-msxmX0518,2023NSCQ-MSX1781).
文摘Automatic crack detection of cement pavement chiefly benefits from the rapid development of deep learning,with convolutional neural networks(CNN)playing an important role in this field.However,as the performance of crack detection in cement pavement improves,the depth and width of the network structure are significantly increased,which necessitates more computing power and storage space.This limitation hampers the practical implementation of crack detection models on various platforms,particularly portable devices like small mobile devices.To solve these problems,we propose a dual-encoder-based network architecture that focuses on extracting more comprehensive fracture feature information and combines cross-fusion modules and coordinated attention mechanisms formore efficient feature fusion.Firstly,we use small channel convolution to construct shallow feature extractionmodule(SFEM)to extract low-level feature information of cracks in cement pavement images,in order to obtainmore information about cracks in the shallowfeatures of images.In addition,we construct large kernel atrous convolution(LKAC)to enhance crack information,which incorporates coordination attention mechanism for non-crack information filtering,and large kernel atrous convolution with different cores,using different receptive fields to extract more detailed edge and context information.Finally,the three-stage feature map outputs from the shallow feature extraction module is cross-fused with the two-stage feature map outputs from the large kernel atrous convolution module,and the shallow feature and detailed edge feature are fully fused to obtain the final crack prediction map.We evaluate our method on three public crack datasets:DeepCrack,CFD,and Crack500.Experimental results on theDeepCrack dataset demonstrate the effectiveness of our proposed method compared to state-of-the-art crack detection methods,which achieves Precision(P)87.2%,Recall(R)87.7%,and F-score(F1)87.4%.Thanks to our lightweight crack detectionmodel,the parameter count of the model in real-world detection scenarios has been significantly reduced to less than 2M.This advancement also facilitates technical support for portable scene detection.
文摘In order to prevent possible casualties and economic loss, it is critical to accurate prediction of the Remaining Useful Life (RUL) in rail prognostics health management. However, the traditional neural networks is difficult to capture the long-term dependency relationship of the time series in the modeling of the long time series of rail damage, due to the coupling relationship of multi-channel data from multiple sensors. Here, in this paper, a novel RUL prediction model with an enhanced pulse separable convolution is used to solve this issue. Firstly, a coding module based on the improved pulse separable convolutional network is established to effectively model the relationship between the data. To enhance the network, an alternate gradient back propagation method is implemented. And an efficient channel attention (ECA) mechanism is developed for better emphasizing the useful pulse characteristics. Secondly, an optimized Transformer encoder was designed to serve as the backbone of the model. It has the ability to efficiently understand relationship between the data itself and each other at each time step of long time series with a full life cycle. More importantly, the Transformer encoder is improved by integrating pulse maximum pooling to retain more pulse timing characteristics. Finally, based on the characteristics of the front layer, the final predicted RUL value was provided and served as the end-to-end solution. The empirical findings validate the efficacy of the suggested approach in forecasting the rail RUL, surpassing various existing data-driven prognostication techniques. Meanwhile, the proposed method also shows good generalization performance on PHM2012 bearing data set.
文摘基于Windows Media技术的流媒体同步控制需要ASF的支持。现有方法要求直接修改ASF文件的头对象而不易编程实现。通过对比研究,提出了一种基于Windows Media Encoder编码器后处理过程间接修改ASF文件的方法,并探讨了该方法的基本原理。实际系统中的成功应用证明了该方法能有效降低编程难度并易于集成,对实现流媒体同步控制具有一定的参考价值。
文摘在flash cs6的默认情况下,Flash cs6只支持flv和f4v格式的视频.如果不是这种格式的视频,我们可以使用Flash cs6自带的视频转换组件Adobe Media Encoder将其他视频格式转换成FLV和F4V格式.本文主要讲解如何使用flash自带的Adobe Media Encoder组件进行视频文件的转换,导入和使用.
基金supported by the National Natural Science Foundation of China(1127105011371183+2 种基金61403036)the Science and Technology Development Foundation of CAEP(2013A04030202013B0403068)
基金supported by the National Natural Science Foundation of China(41274189)
文摘In a satellite laser ranging telescope system, well-aligned encoders of the elevation and azimuth axes are essential for tracking objects. However, it is very difficult and time-consuming to correct the bias between the absolute-position indices of the encoders and the astronomical coordinates, especially in the absence of a finder scope for our system. To solve this problem, a method is presented based on the phenomenon that all stars move anti-clockwise around Polaris in the northern hemisphere. Tests of the proposed adjustment procedure in a satellite laser ranging (SLR)system demonstrated the effectiveness and the time saved by using the approach, which greatly facilitates the optimization of a trackin~ svstem.
基金Project(JX2004J0170) supported by the Foundation of Beijing Jiaotong University, China
文摘Low cost and miniaturized rotary encoders are important in automatic and precise production. Presented here is a code called Single Track Cyclic Gray Code (STCGC) that is an image etched on a single circular track of a rotary encoder disk read by a group of even spread reading heads to provide a unique codeword for every angular position and features such that every two adjacent words differ in exactly one component, thus avoiding coarse error. The existing construction or combination methods are helpful but not sufficient in determining the period of the STCGC of large word length and the theoretical approach needs further development to extend the word length. Three principles, such as the seed combination, short code removal and ergodicity examination were put forward that suffice determination of the optimal period for such absolute rotary encoders using STCGC with even spread heads. The optimal periods of STCGC in 3 through 29 bit length were determined and listed.