The Qarhan Salt Lake area is the Quaternary depocenter of the Qaidam Basin, and carries thick lacustrine sediments, as well as rich potassium and magnesium salt deposits. The abundant resources and thick sediments in ...The Qarhan Salt Lake area is the Quaternary depocenter of the Qaidam Basin, and carries thick lacustrine sediments, as well as rich potassium and magnesium salt deposits. The abundant resources and thick sediments in this lake provide an ideal place for the study of biogas formation and preservation, salt lake evolution, and the uplift of the Tibetan Plateau. In this study, we attempt to construct a paleomagnetic and ^(230)Th age model and to obtain information on tectonic activity and salt lake evolution through detailed studies on a 1300-m-long drill core(15DZK01) from the northwestern margin of the Qarhan Salt Lake area(Dongling Lake). Based on gypsum ^(230)Th dating, the age of the uppermost clastic deposit was calculated to be around 0.052 Ma. The polarity sequence consist of 13 pairs of normal and reversed zones,which can be correlated with subchrons C2r.1r-C1n of the geomagnetic polarity timescale(GPTS 2012)(from ~2.070 Ma to ~0.052 Ma). Sedimentary characteristics indicate that Dongling Lake witnessed freshwater environment between ~ 2.070 Ma and 1.546 Ma. During this period, the sedimentary record reflects primarily lakeshore, shallow-water and swamp environments, representing favourable conditions for the formation of hydrocarbon source rocks. Between 1.546 Ma and ~ 0.052 Ma, the Dongling Lake was in sulphate deposition stage, which contrasts with the central Qarhan Salt Lake area, where this stage did not occur in the meantime. During this stage, Dongling Lake was in a shallow saltwater lake environment, but several periods of reduced salinity occurred during this stage. During the late Pleistocene at ~0.052 Ma, the Dongling Lake experienced uplift due to tectonic activity, and saltwater migrated through the Sanhu Fault to the central Qarhan Salt Lake area, resulting in the absence of halite deposition stage. The residual saline water was concentrated into magnesium-rich brine due to the lack of freshwater, and few potassium salt deposits occur in the Dongling Lake area.展开更多
The Yuhuang hydrothermal field(YHF)is located between the Indomed and Gallieni fracture zones near the top of the off-axis slope on the south rift wall of Segment 29 on the ultraslow Southwest Indian Ridge(SWIR).Previ...The Yuhuang hydrothermal field(YHF)is located between the Indomed and Gallieni fracture zones near the top of the off-axis slope on the south rift wall of Segment 29 on the ultraslow Southwest Indian Ridge(SWIR).Previous studies have shown that sulfides in the YHF formed during different mineralization episodes and the YHF has the greatest potential for the formation of large-scale seafloor massive sulfide deposits.However,the sulfide chronology and hydrothermal activity of the YHF remain poorly constrained.In this study,mineralogical analyses and 230Th/U dating were performed.Hydrothermal activity may start about(35.9±2.3)ka from the southwest part of the YHF and may cease about(708±81)a ago from the northeast part of the YHF.The 74 nonzero chronological data from hydrothermal sulfide samples provide the first quantitative characterization of the spatial and temporal history along the SWIR.Hydrothermal activity in the SWIR has been relatively active over the past20 ka.In contrast,between 40 ka and 100 ka,hydrothermal activity was relatively infrequently and short in duration.The maximum activity occurred at 15–11 ka,9–7 ka,6–0.2 ka.There was a slight positive correlation between the maximal age and estimated surface area or estimated tonnage.The minimum mass accumulation rate of YHF is about 278 t/a,which is higher than most HFs related to ultramafic systems.The ultraslow spreading SWIR has the greatest potential to form large-scale seafloor massive sulfides(SMS)deposits.The results of this study provide new insights into the metallogenic mechanism of hydrothermal sulfides along ultraslow-spreading ridges.展开更多
Layered cave passages formed on the walls of the Qianyou River valley in the middle part of the Qinling Mountains since the Pleistocene due to the intermittent uplifts. 12 speleothem samples near ruins of palaeowater ...Layered cave passages formed on the walls of the Qianyou River valley in the middle part of the Qinling Mountains since the Pleistocene due to the intermittent uplifts. 12 speleothem samples near ruins of palaeowater tables in 3 cave passages are dated by using the Th method. The results show that the 3 caves began to uplift (358±38) ka, (247±28) ka, (118±19) ka ago respectively. Given the differences of elevation between the caves, we could obtain the downcutting rates of the valley: (0.23±0.02) mm/a during 358 -247 ka, (0.19±0.03) mm/a during 247-118 ka, and (0.51(0.08) mm/a since 118 ka. This implies that more and more strong uplifting sustained in the middle part of Qinling since 358展开更多
基金co-supported by the Geological Survey Project of China(Grant No. 1212331413023)the National Natural Science Foundation of China(Grant No. U1407207)
文摘The Qarhan Salt Lake area is the Quaternary depocenter of the Qaidam Basin, and carries thick lacustrine sediments, as well as rich potassium and magnesium salt deposits. The abundant resources and thick sediments in this lake provide an ideal place for the study of biogas formation and preservation, salt lake evolution, and the uplift of the Tibetan Plateau. In this study, we attempt to construct a paleomagnetic and ^(230)Th age model and to obtain information on tectonic activity and salt lake evolution through detailed studies on a 1300-m-long drill core(15DZK01) from the northwestern margin of the Qarhan Salt Lake area(Dongling Lake). Based on gypsum ^(230)Th dating, the age of the uppermost clastic deposit was calculated to be around 0.052 Ma. The polarity sequence consist of 13 pairs of normal and reversed zones,which can be correlated with subchrons C2r.1r-C1n of the geomagnetic polarity timescale(GPTS 2012)(from ~2.070 Ma to ~0.052 Ma). Sedimentary characteristics indicate that Dongling Lake witnessed freshwater environment between ~ 2.070 Ma and 1.546 Ma. During this period, the sedimentary record reflects primarily lakeshore, shallow-water and swamp environments, representing favourable conditions for the formation of hydrocarbon source rocks. Between 1.546 Ma and ~ 0.052 Ma, the Dongling Lake was in sulphate deposition stage, which contrasts with the central Qarhan Salt Lake area, where this stage did not occur in the meantime. During this stage, Dongling Lake was in a shallow saltwater lake environment, but several periods of reduced salinity occurred during this stage. During the late Pleistocene at ~0.052 Ma, the Dongling Lake experienced uplift due to tectonic activity, and saltwater migrated through the Sanhu Fault to the central Qarhan Salt Lake area, resulting in the absence of halite deposition stage. The residual saline water was concentrated into magnesium-rich brine due to the lack of freshwater, and few potassium salt deposits occur in the Dongling Lake area.
基金The National Key R&D Program of China under contract No.2022YFE0140200the National Natural Science Foundation of China under contract Nos 42127807 and 42006074+1 种基金the China Ocean Mineral Resources R&D Association Project under contract Nos DY135-S1-1-02 and DY135-S1-1-01the Macao Science and Technology Development Fund under contract No.FDCT-002/2018/A1。
文摘The Yuhuang hydrothermal field(YHF)is located between the Indomed and Gallieni fracture zones near the top of the off-axis slope on the south rift wall of Segment 29 on the ultraslow Southwest Indian Ridge(SWIR).Previous studies have shown that sulfides in the YHF formed during different mineralization episodes and the YHF has the greatest potential for the formation of large-scale seafloor massive sulfide deposits.However,the sulfide chronology and hydrothermal activity of the YHF remain poorly constrained.In this study,mineralogical analyses and 230Th/U dating were performed.Hydrothermal activity may start about(35.9±2.3)ka from the southwest part of the YHF and may cease about(708±81)a ago from the northeast part of the YHF.The 74 nonzero chronological data from hydrothermal sulfide samples provide the first quantitative characterization of the spatial and temporal history along the SWIR.Hydrothermal activity in the SWIR has been relatively active over the past20 ka.In contrast,between 40 ka and 100 ka,hydrothermal activity was relatively infrequently and short in duration.The maximum activity occurred at 15–11 ka,9–7 ka,6–0.2 ka.There was a slight positive correlation between the maximal age and estimated surface area or estimated tonnage.The minimum mass accumulation rate of YHF is about 278 t/a,which is higher than most HFs related to ultramafic systems.The ultraslow spreading SWIR has the greatest potential to form large-scale seafloor massive sulfides(SMS)deposits.The results of this study provide new insights into the metallogenic mechanism of hydrothermal sulfides along ultraslow-spreading ridges.
基金This work was supported by the Seismology Union Foundation (Grant No. 100064)the National Natural Science Foundation of China (Grant No. 40173011).
文摘Layered cave passages formed on the walls of the Qianyou River valley in the middle part of the Qinling Mountains since the Pleistocene due to the intermittent uplifts. 12 speleothem samples near ruins of palaeowater tables in 3 cave passages are dated by using the Th method. The results show that the 3 caves began to uplift (358±38) ka, (247±28) ka, (118±19) ka ago respectively. Given the differences of elevation between the caves, we could obtain the downcutting rates of the valley: (0.23±0.02) mm/a during 358 -247 ka, (0.19±0.03) mm/a during 247-118 ka, and (0.51(0.08) mm/a since 118 ka. This implies that more and more strong uplifting sustained in the middle part of Qinling since 358