A method based on PCR amplification of the 16S rRNA gene (rDNA)-23S rDNA intergenic spacer regions (ISR) was developed for the identification of species within the novel group hydrogen-producing anaerobes. The sizes o...A method based on PCR amplification of the 16S rRNA gene (rDNA)-23S rDNA intergenic spacer regions (ISR) was developed for the identification of species within the novel group hydrogen-producing anaerobes. The sizes of the PCR products varied from 1264 to 398 bp. Strain of isolate Rennanqilyf 3 was characterized as having products of 1262,398,638,437 and 436 bp. The isolate Rennanqilyf 1 had product of 1264 bp. The isolate Rennanqilyf 13 had products of 1261,579 and 485 bp. Of the 3 species of the novel group hydrogen-producing anaerobes examined, no one was indistinguishable. Two environmental isolates were identified as hydrogen-producing bacteria, which were new species in present taxon. Rennanqilyf 3 could not be associated with any Clostridium sp. studied. Rennanqilyf 1 could be classified into Clostridium genus. The combination between 16S rDNA equencing and length polymorphisms of IRS in 16S-23S rDNA is a better method for determining species of the hydrogen-producing bacteria.展开更多
基金Sponsored by Program of Shanghai Education Committee (Grant No07ZZ156)Key Subject Construction of Shanghai Education Committee(Grant NoP1402) the National Natural Science Fund of China(Grant No30470054)
文摘A method based on PCR amplification of the 16S rRNA gene (rDNA)-23S rDNA intergenic spacer regions (ISR) was developed for the identification of species within the novel group hydrogen-producing anaerobes. The sizes of the PCR products varied from 1264 to 398 bp. Strain of isolate Rennanqilyf 3 was characterized as having products of 1262,398,638,437 and 436 bp. The isolate Rennanqilyf 1 had product of 1264 bp. The isolate Rennanqilyf 13 had products of 1261,579 and 485 bp. Of the 3 species of the novel group hydrogen-producing anaerobes examined, no one was indistinguishable. Two environmental isolates were identified as hydrogen-producing bacteria, which were new species in present taxon. Rennanqilyf 3 could not be associated with any Clostridium sp. studied. Rennanqilyf 1 could be classified into Clostridium genus. The combination between 16S rDNA equencing and length polymorphisms of IRS in 16S-23S rDNA is a better method for determining species of the hydrogen-producing bacteria.