Evaluating the in situ concrete compressive strength by means of cores cut from hardened concrete is acknowledged as the most ordinary method, however, it is very difficult to predict the compressive strength of concr...Evaluating the in situ concrete compressive strength by means of cores cut from hardened concrete is acknowledged as the most ordinary method, however, it is very difficult to predict the compressive strength of concrete since it is affected by many factors such as different mix designs, methods of mixing, curing conditions, compaction, etc. In this paper, considering the experimental results, three different models of multiple linear regression model (MLR), artificial neural network (ANN), and adaptive neuro-fuzzy inference system (ANFIS) are established, trained, and tested within the Matlab programming environment for predicting the 28 days compressive strength of concrete with 173 different mix designs. Finally, these three models are compared with each other and resulted in the fact that ANN and ANFIS models enables us to reliably evaluate the compressive strength of concrete with different mix designs, however, multiple linear regression model is not feasible enough in this area because of nonlinear relationship between the concrete mix parameters. Finally, the sensitivity analysis (SA) for two different sets of parameters on the concrete compressive strength prediction are carried out.展开更多
Based on a large number of orthogonal tests and theoretical analyses, the retarding mortar which meets the requirements of retard-bonded prestressed concrete was prepared. Initial setting time of the retarding mortar ...Based on a large number of orthogonal tests and theoretical analyses, the retarding mortar which meets the requirements of retard-bonded prestressed concrete was prepared. Initial setting time of the retarding mortar may vary from several hours to 15 d at 5 ℃-35 ℃ due to quantities and average curing temperature. And its 28 d compressive strength is above 35 MPa. Thus the influence of quantities on setting time and 28 d compressive strength, and the relationship between setting time and average curing temperature were investigated. The optimum quantities were obtained by studying the interaction of admixtures, and the retarding mechanism was discussed. Based on 52 retard-bonded prestressed strands by manual work from 24 retard-bonded prestressed concrete T-beams, static friction drag, change factor κ and friction factor μ were obtained from the test when retard-bonded prestressed strands were tensioned. Application of the retarding mortar will be vast in practical concrete projects.展开更多
Assessing the durability of concrete is of prime importance to provide an adequate service life and reduce the repairing cost of structures.Freeze-thaw is one such test that indicates the ability of concrete to last a...Assessing the durability of concrete is of prime importance to provide an adequate service life and reduce the repairing cost of structures.Freeze-thaw is one such test that indicates the ability of concrete to last a long time without a significant loss in its performance.In this study,the freeze-thaw resistance of polymer concrete containing different polymer contents was explored and compared to various conventional cement concretes.Concretes’fresh and hardened properties were assessed for their workability,air content,and compressive strength.The mass loss,length change,dynamic modulus of elasticity,and residual compressive strength were determined for all types of concretes subjected to freeze-thaw cycles according to ASTM C666-procedure A.Results showed that polymer concrete(PC)specimens prepared with higher dosages of polymer contents possessed better freeze-thaw durability compared to other specimens.This high durability performance of PCs is mainly due to their impermeable microstructures,absence of water in their structure,and the high bond strength between aggregates and a polymer binder.It is also indicated that the performance of high-strength concrete containing air-entraining admixture is comparable with PC having optimum polymer content in terms of residual compressive strength,dynamic modulus of elasticity,mass loss,and length change.展开更多
文摘Evaluating the in situ concrete compressive strength by means of cores cut from hardened concrete is acknowledged as the most ordinary method, however, it is very difficult to predict the compressive strength of concrete since it is affected by many factors such as different mix designs, methods of mixing, curing conditions, compaction, etc. In this paper, considering the experimental results, three different models of multiple linear regression model (MLR), artificial neural network (ANN), and adaptive neuro-fuzzy inference system (ANFIS) are established, trained, and tested within the Matlab programming environment for predicting the 28 days compressive strength of concrete with 173 different mix designs. Finally, these three models are compared with each other and resulted in the fact that ANN and ANFIS models enables us to reliably evaluate the compressive strength of concrete with different mix designs, however, multiple linear regression model is not feasible enough in this area because of nonlinear relationship between the concrete mix parameters. Finally, the sensitivity analysis (SA) for two different sets of parameters on the concrete compressive strength prediction are carried out.
文摘Based on a large number of orthogonal tests and theoretical analyses, the retarding mortar which meets the requirements of retard-bonded prestressed concrete was prepared. Initial setting time of the retarding mortar may vary from several hours to 15 d at 5 ℃-35 ℃ due to quantities and average curing temperature. And its 28 d compressive strength is above 35 MPa. Thus the influence of quantities on setting time and 28 d compressive strength, and the relationship between setting time and average curing temperature were investigated. The optimum quantities were obtained by studying the interaction of admixtures, and the retarding mechanism was discussed. Based on 52 retard-bonded prestressed strands by manual work from 24 retard-bonded prestressed concrete T-beams, static friction drag, change factor κ and friction factor μ were obtained from the test when retard-bonded prestressed strands were tensioned. Application of the retarding mortar will be vast in practical concrete projects.
文摘Assessing the durability of concrete is of prime importance to provide an adequate service life and reduce the repairing cost of structures.Freeze-thaw is one such test that indicates the ability of concrete to last a long time without a significant loss in its performance.In this study,the freeze-thaw resistance of polymer concrete containing different polymer contents was explored and compared to various conventional cement concretes.Concretes’fresh and hardened properties were assessed for their workability,air content,and compressive strength.The mass loss,length change,dynamic modulus of elasticity,and residual compressive strength were determined for all types of concretes subjected to freeze-thaw cycles according to ASTM C666-procedure A.Results showed that polymer concrete(PC)specimens prepared with higher dosages of polymer contents possessed better freeze-thaw durability compared to other specimens.This high durability performance of PCs is mainly due to their impermeable microstructures,absence of water in their structure,and the high bond strength between aggregates and a polymer binder.It is also indicated that the performance of high-strength concrete containing air-entraining admixture is comparable with PC having optimum polymer content in terms of residual compressive strength,dynamic modulus of elasticity,mass loss,and length change.