A flexible camera calibration technique using 2D-DLT and bundle adjustment with planar scenes is proposed. The equation of principal line under image coordinate system represented with 2D-DLT parameters is educed usin...A flexible camera calibration technique using 2D-DLT and bundle adjustment with planar scenes is proposed. The equation of principal line under image coordinate system represented with 2D-DLT parameters is educed using the correspondence between collinearity equations and 2D-DLT. A novel algorithm to obtain the initial value of principal point is put forward. Proof of Critical Motion Sequences for calibration is given in detail. The practical decomposition algorithm of exterior parameters using initial values of principal point, focal length and 2D-DLT parameters is discussed elaborately. Planar\|scene camera calibration algorithm with bundle adjustment is addressed. Very good results have been obtained with both computer simulations and real data calibration. The calibration result can be used in some high precision applications, such as reverse engineering and industrial inspection.展开更多
文摘A flexible camera calibration technique using 2D-DLT and bundle adjustment with planar scenes is proposed. The equation of principal line under image coordinate system represented with 2D-DLT parameters is educed using the correspondence between collinearity equations and 2D-DLT. A novel algorithm to obtain the initial value of principal point is put forward. Proof of Critical Motion Sequences for calibration is given in detail. The practical decomposition algorithm of exterior parameters using initial values of principal point, focal length and 2D-DLT parameters is discussed elaborately. Planar\|scene camera calibration algorithm with bundle adjustment is addressed. Very good results have been obtained with both computer simulations and real data calibration. The calibration result can be used in some high precision applications, such as reverse engineering and industrial inspection.