Detection of small cancer biomarkers with low molecular weight and a low concentration range has always been challenging yet urgent in many clinical applications such as diagnosing early-stage cancer,monitoring treatm...Detection of small cancer biomarkers with low molecular weight and a low concentration range has always been challenging yet urgent in many clinical applications such as diagnosing early-stage cancer,monitoring treatment and detecting relapse.Here,a highly enhanced plasmonic biosensor that can overcome this challenge is developed using atomically thin two-dimensional phase change nanomaterial.By precisely engineering the configuration with atomically thin materials,the phase singularity has been successfully achieved with a significantly enhanced lateral position shift effect.Based on our knowledge,it is the first experimental demonstration of a lateral position signal change>340μm at a sensing interface from all optical techniques.With this enhanced plasmonic effect,the detection limit has been experimentally demonstrated to be 10^(-15) mol L^(−1) for TNF-α cancer marker,which has been found in various human diseases including inflammatory diseases and different kinds of cancer.The as-reported novel integration of atomically thin Ge_(2)Sb_(2)Te_(5) with plasmonic substrate, which results in a phase singularity and thus a giant lateral position shift, enables the detection of cancer markers with low molecular weight at femtomolar level. These results will definitely hold promising potential in biomedical application and clinical diagnostics.展开更多
In this paper, the properties and concepts of dual systems of the two-dimensional singular Roesser models (2-D SRM) are studied. Two different concepts of the dual systems are proposed for the 2-D SRM. One is derive...In this paper, the properties and concepts of dual systems of the two-dimensional singular Roesser models (2-D SRM) are studied. Two different concepts of the dual systems are proposed for the 2-D SRM. One is derived from the duality defined for two-dimensional singular general models (2-D SGM)-called the S-dual systems; the other one is defined based on 2-D SRM in a traditional sense-called the T-dual systems. It is shown that if a 2-D SRM is jump-mode free or jump-mode reachable, then it can be equivalently transformed into a canonical form of a 2-D SRM, for which the T-duality and the S-duality are equivalent. This will be of some perspective applications in the robust control of 2-D SRM.展开更多
This paper discusses the problem of the H∞ filtering for discrete time 2-D singular Roesser models (2-D SRM). The purpose is to design an observer-based 2-D singular filter such that the error system is acceptable, j...This paper discusses the problem of the H∞ filtering for discrete time 2-D singular Roesser models (2-D SRM). The purpose is to design an observer-based 2-D singular filter such that the error system is acceptable, jump modes free and stable, and satisfies a pre-specified H∞ performance level. By general Riccati inequality and bilinear matrix inequalities (BMI), a sufficient condition for the solvability of the observer-based H∞ filtering problem for 2-D SRM is given. A numerical example is provided to demonstrate the applicability of the proposed approach.展开更多
In this paper,two kinds of contact problems in 2-D dodecagonal quasicrystals were discussed using the complex variable function method:one is the finite frictional contact problem,the other is the adhesive contact pr...In this paper,two kinds of contact problems in 2-D dodecagonal quasicrystals were discussed using the complex variable function method:one is the finite frictional contact problem,the other is the adhesive contact problem.The analytic expressions of contact stresses in the phonon and phason fields were obtained for a flat rigid punch,which showed that:(1) for the finite frictional contact problem,the contact stress exhibited power-type singularities at the edge of the contact zone;(2) for the adhesive contact problem,the contact stress exhibited oscillatory singularities at the edge of the contact zone.The distribution regulation of contact stress under punch was illustrated;and the low friction property of quasicrystals was verified graphically.展开更多
基金We thank Shiyue Liu from School of Life Sciences in The Chinese University of Hong Kong for helpful discussions.This work is supported under the PROCORE-France/Hong Kong Joint Research Scheme(F-CUHK402/19)the Research Grants Council,Hong Kong Special Administration Region(AoE/P-02/12,14210517,14207419,N_CUHK407/16)the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No.798916.Y.Wang is supported under the Hong Kong PhD Fellowship Scheme.
文摘Detection of small cancer biomarkers with low molecular weight and a low concentration range has always been challenging yet urgent in many clinical applications such as diagnosing early-stage cancer,monitoring treatment and detecting relapse.Here,a highly enhanced plasmonic biosensor that can overcome this challenge is developed using atomically thin two-dimensional phase change nanomaterial.By precisely engineering the configuration with atomically thin materials,the phase singularity has been successfully achieved with a significantly enhanced lateral position shift effect.Based on our knowledge,it is the first experimental demonstration of a lateral position signal change>340μm at a sensing interface from all optical techniques.With this enhanced plasmonic effect,the detection limit has been experimentally demonstrated to be 10^(-15) mol L^(−1) for TNF-α cancer marker,which has been found in various human diseases including inflammatory diseases and different kinds of cancer.The as-reported novel integration of atomically thin Ge_(2)Sb_(2)Te_(5) with plasmonic substrate, which results in a phase singularity and thus a giant lateral position shift, enables the detection of cancer markers with low molecular weight at femtomolar level. These results will definitely hold promising potential in biomedical application and clinical diagnostics.
基金This work was supported in part by the National Natural Science Foundation of China (No. 60474078, 60574015, 60674014)in part by Jiangsu Planned Projects for Postdoctoral Research Funds (0601010B).
文摘In this paper, the properties and concepts of dual systems of the two-dimensional singular Roesser models (2-D SRM) are studied. Two different concepts of the dual systems are proposed for the 2-D SRM. One is derived from the duality defined for two-dimensional singular general models (2-D SGM)-called the S-dual systems; the other one is defined based on 2-D SRM in a traditional sense-called the T-dual systems. It is shown that if a 2-D SRM is jump-mode free or jump-mode reachable, then it can be equivalently transformed into a canonical form of a 2-D SRM, for which the T-duality and the S-duality are equivalent. This will be of some perspective applications in the robust control of 2-D SRM.
基金Supported by National Natural Science Foundation of P.R.China (60304001, 60474078) the Science Research Development Foundation of Nanjing University of Science and Technology
文摘This paper discusses the problem of the H∞ filtering for discrete time 2-D singular Roesser models (2-D SRM). The purpose is to design an observer-based 2-D singular filter such that the error system is acceptable, jump modes free and stable, and satisfies a pre-specified H∞ performance level. By general Riccati inequality and bilinear matrix inequalities (BMI), a sufficient condition for the solvability of the observer-based H∞ filtering problem for 2-D SRM is given. A numerical example is provided to demonstrate the applicability of the proposed approach.
基金supported by the National Key Research and Development Program of China(2018YFA0306800,2021YFA1400400,2018YFA0306200,and 2021YFA1202901)the National Natural Science Foundation of China(92165205,11790311,12004172,51861145201,52072168,21733001,and 91750101)+2 种基金the Innovation Program for Quantum Science and Technology for China(2021ZD0302803)the Jiangsu Planned Projects for Postdoctoral Research Funds(2020Z172)the Program of High-Level Entrepreneurial and Innovative Talents Introduction of Jiangsu Province,China。
基金Project supported by the National Natural Science Foundation of China(Nos.11362018,11261045 and 11261401)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20116401110002)
文摘In this paper,two kinds of contact problems in 2-D dodecagonal quasicrystals were discussed using the complex variable function method:one is the finite frictional contact problem,the other is the adhesive contact problem.The analytic expressions of contact stresses in the phonon and phason fields were obtained for a flat rigid punch,which showed that:(1) for the finite frictional contact problem,the contact stress exhibited power-type singularities at the edge of the contact zone;(2) for the adhesive contact problem,the contact stress exhibited oscillatory singularities at the edge of the contact zone.The distribution regulation of contact stress under punch was illustrated;and the low friction property of quasicrystals was verified graphically.