Metal-organic frameworks(MOFs)have been widely adopted in various fields(catalysis,sensor,energy storage,etc.)during the last decade owing to the trait of abundant surface chemistry,porous structure,easy-to-adjust por...Metal-organic frameworks(MOFs)have been widely adopted in various fields(catalysis,sensor,energy storage,etc.)during the last decade owing to the trait of abundant surface chemistry,porous structure,easy-to-adjust pore size,and diverse functional groups.However,the limited active sites and the poor conductivity hinder the relative practical application.2D MOFs can shorten the ion transport path with the merit of layered structure.The large surface area can increase the number of active sites as well as effectively utilize the sufficient active sites,exhibiting enormous potential in the field of energy storage systems(EESs).In this review,the characteristics of the 2D MOFs have been introduced,and the systematic synthesis methods(top-down and bottom-up)of 2D MOFs are presented,providing fundamental understanding for the construction of 2D MOFs.Moreover,the applications of 2D MOFs in energy storage fields such as supercapacitors and batteries are demonstrated in detail.Finally,the future development prospects have been proposed,offering guidelines for the rational utilization of 2D MOFs and promoting the understanding of 2D MOFs in EESs.展开更多
In the complex orchard environment,the efficient and accurate detection of object fruit is the basic requirement to realize the orchard yield measurement and automatic harvesting.Sometimes it is hard to differentiate ...In the complex orchard environment,the efficient and accurate detection of object fruit is the basic requirement to realize the orchard yield measurement and automatic harvesting.Sometimes it is hard to differentiate between the object fruits and the background because of the similar color,and it is challenging due to the ambient light and camera angle by which the photos have been taken.These problems make it hard to detect green fruits in orchard environments.In this study,a two-stage dense to detection framework(D2D)was proposed to detect green fruits in orchard environments.The proposed model was based on multi-scale feature extraction of target fruit by using feature pyramid networks MobileNetV2+FPN structure and generated region proposal of target fruit by using Region Proposal Network(RPN)structure.In the regression branch,the offset of each local feature was calculated,and the positive and negative samples of the region proposals were predicted by a binary mask prediction to reduce the interference of the background to the prediction box.In the classification branch,features were extracted from each sub-region of the region proposal,and features with distinguishing information were obtained through adaptive weighted pooling to achieve accurate classification.The new proposed model adopted an anchor-free frame design,which improves the generalization ability,makes the model more robust,and reduces the storage requirements.The experimental results of persimmon and green apple datasets show that the new model has the best detection performance,which can provide theoretical reference for other green object detection.展开更多
The controllable construction of two-dimensional(2D)metal–organic framework(MOF)nanosheets with favorable electrochemical performances is greatly challenging for energy storage.Here,we design an in situ induced growt...The controllable construction of two-dimensional(2D)metal–organic framework(MOF)nanosheets with favorable electrochemical performances is greatly challenging for energy storage.Here,we design an in situ induced growth strategy to construct the ultrathin carboxylated carbon nanotubes(C-CNTs)interpenetrated nickel MOF(Ni-MOF/C-CNTs)nanosheets.The deliberate thickness and specific surface area of novel 2D hybrid nanosheets can be effectively tuned via finely controlling C-CNTs involvement.Due to the unique microstructure,the integrated 2D hybrid nanosheets are endowed with plentiful electroactive sites to promote the electrochemical performances greatly.The prepared Ni-MOF/C-CNTs nanosheets exhibit superior specific capacity of 680 C g^−1 at 1 A g^−1 and good capacity retention.The assembled hybrid device demonstrated the maximum energy density of 44.4 Wh kg^−1 at a power density of 440 W kg^−1.Our novel strategy to construct ultrathin 2D MOF with unique properties can be extended to synthesize various MOF-based functional materials for diverse applications.展开更多
It is highly desirable to design efficient and stable hydrogen evolution reaction(HER)and oxygen evolution/reduction reaction(OER/ORR)electrocatalysts for the development of renewable energy technologies.Herein,densit...It is highly desirable to design efficient and stable hydrogen evolution reaction(HER)and oxygen evolution/reduction reaction(OER/ORR)electrocatalysts for the development of renewable energy technologies.Herein,density functional theory(DFT)calculations were conducted to systematically investigate a series of TMN_(x)O_(4-x)-HTT(TM=Fe,Co,Ni,Ru,Rh,Pd,Ir and Pt;HTT=hexahydroxy tetraazanaphthotetraphene)analogs of two-dimensional(2D)conductive metal-organic frameworks(MOFs)as potential electrocatalysts for the HER,OER and ORR.The thermodynamic and electrochemical stability simulations suggest that these designed catalysts are stable.Remarkably,CoO_(4)-HTT,RhN_(3)O_(1)-HTT and IrN3O1-HTT are predicted to be the most promising catalysts for the HER,OER and ORR,respectively,surpassing the catalytic activity of corresponding benchmark catalysts.The volcano plots were established based on the scaling relationship of adsorption Gibbs free energy of intermediates.The results reveal that regulating combinations of metal active centers and local coordination environments could effectively balance the interaction strength between intermediates and catalysts,thus achieving optimal catalytic activity.Our findings not only opt for the promising HER/OER/ORR electrocatalysts but also guide the design of efficient electrocatalysts based on 2D MOFs materials.展开更多
Interfacial engineering to alter the configuration of active sites in heterogeneous catalysts is a potential strategy for activity enhancement,but it remains unelucidated for metal-organic frameworks(MOFs).Here,we dem...Interfacial engineering to alter the configuration of active sites in heterogeneous catalysts is a potential strategy for activity enhancement,but it remains unelucidated for metal-organic frameworks(MOFs).Here,we demonstrate that the surface of two-dimensional Co-based MOF is modified by decorating Ag quantum dots(QDs)simply through in-situ reduction of Ag+ions.Toward oxygen evolution reaction(OER),it reveals that the catalysis is mediated by the reversible redox of Co sites between Co^(3+) and Co^(4+) states coupling with transfer of OHions.The decoration of Ag QDs decreases the redox potential of Co sites,and thus effectively decreases the overpotential of OER.The TOFs of Co sites are increased by 77 times to reach 5.4 s^(-1) at an overpotential of 0.35 V.We attribute the activity enhancement to the tuning of the coupling process between Co sites and OHions during the redox of Co sites by Ag QDs decoration based on Pourbaix analysis.展开更多
A new 3D Ag(I) coordination polymer {[Ag(AZDB)(0.5)(bpe)(0.5)]·H2O}n(1) has been papared by azobenzene-3,3?-dicarboxylicate(H2AZDB), 1,2-bis(4-pyridyl)ethylene(bpe) and silver salts via hydroth...A new 3D Ag(I) coordination polymer {[Ag(AZDB)(0.5)(bpe)(0.5)]·H2O}n(1) has been papared by azobenzene-3,3?-dicarboxylicate(H2AZDB), 1,2-bis(4-pyridyl)ethylene(bpe) and silver salts via hydrothermal method. The compound was fully characterized by single-crystal X-ray diffraction, elemental analyses, infrared spectrum(IR), powder X-ray diffraction(PXRD) and thermogravimetric analysis(TGA). The strucrural analysis indicate that compound 1 shows a 3D pillared-layer framework constructed from a unique 1D Ag2O2 ribbon and pyridyl/carboxylicate mixed system, which features a 2-nodal(4, 6)-connected fsc net with a(4^4·6^10·8)(4^4·6^2) topology.Moreover, the photoluminescent properties have also been discussed.展开更多
2D covalent organic framework(2D-COF),a modular three-dimensional material,is easily influenced by the component module.The assembly of different functionalized modules gives 2D-COF unique performance.The modular stru...2D covalent organic framework(2D-COF),a modular three-dimensional material,is easily influenced by the component module.The assembly of different functionalized modules gives 2D-COF unique performance.The modular structure not only allows for customi-zation but also allows for variety,which gives 2D-COF a wide range of functions.Hence,many building blocks with catalytic,ligand,semiconductor,luminescent,and redox centers are integrated into the COF scaffold.The connection and assembly of such modules determine the nature of the final block material.The intra-layer connections of the modules form a monolayer mesh chemical structure,and the subsequent stacking of the monolayer mesh structure produces the final crystalline porous material-2D-COF.This review describes in detail the potential of COF materials as optoelectronic materials and our understanding of optoelectronic processes,starting from monolayer reticulation chemistry to final 3D stacked structures,thus establishing a new paradigm for the ra-tional design of well-defined novel 2D-COF optoelectronic materials and devices.展开更多
The conjugation of external species with twodimensional(2D)materials has broad application prospects.In this study,we have explored the potential of noble metal/2D MOF heterostructures in hydrogen storage.Specifically...The conjugation of external species with twodimensional(2D)materials has broad application prospects.In this study,we have explored the potential of noble metal/2D MOF heterostructures in hydrogen storage.Specifically,the MgH_(2)-Ni-MOF@Pd system has shown remarkable hydrogen desorption/sorption performances,starting to liberate hydrogen at 1810C,which is 2300C lower than that of pristine MgH2.Under the catalytic effect of Ni-MOF@Pd,the dehydrogenation apparent activation energy of MgH2 is noticeably decreased from(133.5±17.5)to(34.58±1.87)kJ·moL^(-1),and the hydrogenation apparent activation energy is reduced from(70.41±7.43)to(25.78±4.64)kJ·moL^(-1),which is lowered by 63.4%.The fully-dehydrogenated MgH2-NiMOF@Pd composite rapidly uptakes hydrogen,with 2.62wt%at 100℃and 6.06 wt%at 150℃within 300 s,respectively.The mechanism analysis of MgH2 catalyzed by Ni-MOF@Pd has revealed that the transformation of Mg_2Ni and Mg_2NiH_4 could act as a"hydrogen pump",providing numerous channels for fast diffusion and transport of hydrogen atoms.Moreover,in the dehydrogenation process,the element Pd reacts with MgH_(2)to form the MgPd alloy phase,which makes MgH_(2)take precedence to decompose through the Mg-Pd alloy rather than self-decomposition,further reducing thermal stability and improving de/hydrogenation kinetics.The synergistic effect of Mg-Pd,Mg_2Ni,and the special ultra-thin 2D sheet structure of the additive is the main reason for the good hydrogen storage property of MgH_(2)-Ni-MOF@Pd.Our findings provide inspiration for designing efficient multifunctional additives with unique morphologies to optimize the hydrogen desorption/sorption behaviors of hydrogen storage materials.展开更多
The development of adsorbent materials for effective capture of radioactive iodomethane(CH_(3)I) from the off-gas of used nuclear fuel reprocessing, remains a significant and challenging line of research because curre...The development of adsorbent materials for effective capture of radioactive iodomethane(CH_(3)I) from the off-gas of used nuclear fuel reprocessing, remains a significant and challenging line of research because currently state-of-art adsorbents still suffer from low binding affinity with CH_(3)I. Here, we proposed a brand-new adsorption topological structure by developing a 2D interdigitated layered framework, named SCU-20, featuring slide-like channel with multiple active sites for CH_(3)I capture. The responsive rotating-adaptive aperture of SCU-20 enables the optimal utilization of all active sites within the pore for highly selective recognition and capture of CH_(3)I. A record-breaking CH_(3)I uptake capacity of 1.84 g/g was achieved under static sorption conditions with saturated CH_(3)I vapor. Both experimental and theoretical findings demonstrated that the exceptional uptake of SCU-20 towards CH_(3)I can be attributed to the confined physical electrostatic adsorption of F sites, coupled with the chemical nitrogen methylation reaction with uncoordinated N atoms of pyrazine. Moreover, dynamic CH_(3)I uptake capacity potentially allows for the capture of CH_(3)I in simulated real-world off gas reprocessing conditions. This study highlights the potential of SCU-20 as a promising candidate for efficient capture of iodine species and contributes to the development of effective solutions for radioactive iodine remediation.展开更多
Electron energy dissipation is an important energy dissipation pathway that cannot be ignored in friction process.Two-dimensional zeolite imidazole frameworks(2D ZIFs)and fluorine doping strategies give 2D Zn-ZIF and ...Electron energy dissipation is an important energy dissipation pathway that cannot be ignored in friction process.Two-dimensional zeolite imidazole frameworks(2D ZIFs)and fluorine doping strategies give 2D Zn-ZIF and 2D Co-ZIF unique electrical properties,making them ideal materials for studying electron energy dissipation mechanism.In this paper,based on the superlubricity modulation of 2D fluoridated ZIFs,the optimal tribological properties are obtained on the 2D F-Co-ZIF surface,with the friction coefficient as low as 0.0010.Electrical experiments,density functional theory(DFT)simulation,and fluorescence detection are used to explain the mechanism of fluorine doping regulation of tribological properties from the two stages,namely energy transfer and energy release.Specifically,the energy will transfer into the friction system through the generation of electron–hole pairs under an external excitation,and release by radiation and non-radiation energy dissipation channels.Fluorination reduces energy transfer by altering the electronic properties and band structures of ZIFs,and slows down the charge transfer by enhancing the shielding efficiency,thus slowing the non-radiative energy dissipation rate during the energy release stage.Our insights not only help us better understand the role of fluorine doping in improving tribological properties,but also provide a new way to further explore the electron energy dissipation pathway during friction.展开更多
Discovering more and new geometrically frustrated systems remains an active point of inquiry in fundamental physics for the existence of unusual states of matter.Here,we report spin-liquid-like behavior in a two-dimen...Discovering more and new geometrically frustrated systems remains an active point of inquiry in fundamental physics for the existence of unusual states of matter.Here,we report spin-liquid-like behavior in a two-dimensional(2D)rhombic lattice Fe-metal-organic framework(Fe-MOF)with frustrated antiferromagnetism.This Fe-MOF exhibits a high frustration factor f=|θCW|/TN≥315,and its long-range magnetic order is suppressed down to 180 mK.Detailed theoretical calculations demonstrate strong antiferromagnetic coupling between adjacent Fe3+ions,indicating the potential of a classical spin-liquid-like behavior.Notably,a T-linear heat capacity parameter,γ,originating from electronic contributions and with magnetic field independence up to 8 T,can be observed in the specific heat capacity measurements at low-temperature,providing further proof for the spin-liquid-like behavior.This work highlights the potential of MOF materials in geometrically frustrated systems,and will promote the research of exotic quantum physics phenomena.展开更多
基金supported by the National Natural Science Foundation of China(52004338,51622406,21673298)Hunan Provincial Natural Science Foundation(2022JJ20075)Scientific Research Fund of Hunan Provincial Education Department(21B0017).
文摘Metal-organic frameworks(MOFs)have been widely adopted in various fields(catalysis,sensor,energy storage,etc.)during the last decade owing to the trait of abundant surface chemistry,porous structure,easy-to-adjust pore size,and diverse functional groups.However,the limited active sites and the poor conductivity hinder the relative practical application.2D MOFs can shorten the ion transport path with the merit of layered structure.The large surface area can increase the number of active sites as well as effectively utilize the sufficient active sites,exhibiting enormous potential in the field of energy storage systems(EESs).In this review,the characteristics of the 2D MOFs have been introduced,and the systematic synthesis methods(top-down and bottom-up)of 2D MOFs are presented,providing fundamental understanding for the construction of 2D MOFs.Moreover,the applications of 2D MOFs in energy storage fields such as supercapacitors and batteries are demonstrated in detail.Finally,the future development prospects have been proposed,offering guidelines for the rational utilization of 2D MOFs and promoting the understanding of 2D MOFs in EESs.
基金the Natural Science Foundation of Shandong Province in China(Grant No.ZR2020MF076)the Focus on Research and Development Plan in Shandong Province(Grant No.2019GNC106115)+2 种基金the National Nature Science Foundation of China(Grant No.62072289)the Shandong Province Higher Educational Science and Technology Program(Grant No.J18KA308)the Taishan Scholar Program of Shandong Province of China.
文摘In the complex orchard environment,the efficient and accurate detection of object fruit is the basic requirement to realize the orchard yield measurement and automatic harvesting.Sometimes it is hard to differentiate between the object fruits and the background because of the similar color,and it is challenging due to the ambient light and camera angle by which the photos have been taken.These problems make it hard to detect green fruits in orchard environments.In this study,a two-stage dense to detection framework(D2D)was proposed to detect green fruits in orchard environments.The proposed model was based on multi-scale feature extraction of target fruit by using feature pyramid networks MobileNetV2+FPN structure and generated region proposal of target fruit by using Region Proposal Network(RPN)structure.In the regression branch,the offset of each local feature was calculated,and the positive and negative samples of the region proposals were predicted by a binary mask prediction to reduce the interference of the background to the prediction box.In the classification branch,features were extracted from each sub-region of the region proposal,and features with distinguishing information were obtained through adaptive weighted pooling to achieve accurate classification.The new proposed model adopted an anchor-free frame design,which improves the generalization ability,makes the model more robust,and reduces the storage requirements.The experimental results of persimmon and green apple datasets show that the new model has the best detection performance,which can provide theoretical reference for other green object detection.
基金supported by National Natural Science Foundation of China(21878062)
文摘The controllable construction of two-dimensional(2D)metal–organic framework(MOF)nanosheets with favorable electrochemical performances is greatly challenging for energy storage.Here,we design an in situ induced growth strategy to construct the ultrathin carboxylated carbon nanotubes(C-CNTs)interpenetrated nickel MOF(Ni-MOF/C-CNTs)nanosheets.The deliberate thickness and specific surface area of novel 2D hybrid nanosheets can be effectively tuned via finely controlling C-CNTs involvement.Due to the unique microstructure,the integrated 2D hybrid nanosheets are endowed with plentiful electroactive sites to promote the electrochemical performances greatly.The prepared Ni-MOF/C-CNTs nanosheets exhibit superior specific capacity of 680 C g^−1 at 1 A g^−1 and good capacity retention.The assembled hybrid device demonstrated the maximum energy density of 44.4 Wh kg^−1 at a power density of 440 W kg^−1.Our novel strategy to construct ultrathin 2D MOF with unique properties can be extended to synthesize various MOF-based functional materials for diverse applications.
基金supported by the National Natural Science Foundation of China(Nos.22102167 and U21A20317).
文摘It is highly desirable to design efficient and stable hydrogen evolution reaction(HER)and oxygen evolution/reduction reaction(OER/ORR)electrocatalysts for the development of renewable energy technologies.Herein,density functional theory(DFT)calculations were conducted to systematically investigate a series of TMN_(x)O_(4-x)-HTT(TM=Fe,Co,Ni,Ru,Rh,Pd,Ir and Pt;HTT=hexahydroxy tetraazanaphthotetraphene)analogs of two-dimensional(2D)conductive metal-organic frameworks(MOFs)as potential electrocatalysts for the HER,OER and ORR.The thermodynamic and electrochemical stability simulations suggest that these designed catalysts are stable.Remarkably,CoO_(4)-HTT,RhN_(3)O_(1)-HTT and IrN3O1-HTT are predicted to be the most promising catalysts for the HER,OER and ORR,respectively,surpassing the catalytic activity of corresponding benchmark catalysts.The volcano plots were established based on the scaling relationship of adsorption Gibbs free energy of intermediates.The results reveal that regulating combinations of metal active centers and local coordination environments could effectively balance the interaction strength between intermediates and catalysts,thus achieving optimal catalytic activity.Our findings not only opt for the promising HER/OER/ORR electrocatalysts but also guide the design of efficient electrocatalysts based on 2D MOFs materials.
基金gratefully acknowledge the financial support from the National Natural Science Foundation of China(51802265,22002119)the Fundamental Research Funds for the Central Universities of China+2 种基金the Initiative Postdocs Supporting Program(BX20190281)the General Program,Science and Technology Program of Taicang,China(TC2020JC01)the National Natural Science Foundation of Jiangsu,China(BK20200261)。
文摘Interfacial engineering to alter the configuration of active sites in heterogeneous catalysts is a potential strategy for activity enhancement,but it remains unelucidated for metal-organic frameworks(MOFs).Here,we demonstrate that the surface of two-dimensional Co-based MOF is modified by decorating Ag quantum dots(QDs)simply through in-situ reduction of Ag+ions.Toward oxygen evolution reaction(OER),it reveals that the catalysis is mediated by the reversible redox of Co sites between Co^(3+) and Co^(4+) states coupling with transfer of OHions.The decoration of Ag QDs decreases the redox potential of Co sites,and thus effectively decreases the overpotential of OER.The TOFs of Co sites are increased by 77 times to reach 5.4 s^(-1) at an overpotential of 0.35 V.We attribute the activity enhancement to the tuning of the coupling process between Co sites and OHions during the redox of Co sites by Ag QDs decoration based on Pourbaix analysis.
基金supported by the NSF of Hubei Province(No.2014CFB277)the Open Foundation of Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecular Chemistry(No.338080057)
文摘A new 3D Ag(I) coordination polymer {[Ag(AZDB)(0.5)(bpe)(0.5)]·H2O}n(1) has been papared by azobenzene-3,3?-dicarboxylicate(H2AZDB), 1,2-bis(4-pyridyl)ethylene(bpe) and silver salts via hydrothermal method. The compound was fully characterized by single-crystal X-ray diffraction, elemental analyses, infrared spectrum(IR), powder X-ray diffraction(PXRD) and thermogravimetric analysis(TGA). The strucrural analysis indicate that compound 1 shows a 3D pillared-layer framework constructed from a unique 1D Ag2O2 ribbon and pyridyl/carboxylicate mixed system, which features a 2-nodal(4, 6)-connected fsc net with a(4^4·6^10·8)(4^4·6^2) topology.Moreover, the photoluminescent properties have also been discussed.
基金the financial support from the National Key R&D Program of‘Key Scientific Issues of Transformative Technology'(Grant No.2018YFA0703200)the National Natural Science Foundation of China(Nos.61890940,21922511,51873216,52003274)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB30000000)the CAS Key Research Program of Frontier Sciences(Grant No.QYZDYSSWSLH029),the CAS-Croucher Funding Scheme for Joint Laboratories,Lu Jiaxi international team(GJTD-2020-02).
文摘2D covalent organic framework(2D-COF),a modular three-dimensional material,is easily influenced by the component module.The assembly of different functionalized modules gives 2D-COF unique performance.The modular structure not only allows for customi-zation but also allows for variety,which gives 2D-COF a wide range of functions.Hence,many building blocks with catalytic,ligand,semiconductor,luminescent,and redox centers are integrated into the COF scaffold.The connection and assembly of such modules determine the nature of the final block material.The intra-layer connections of the modules form a monolayer mesh chemical structure,and the subsequent stacking of the monolayer mesh structure produces the final crystalline porous material-2D-COF.This review describes in detail the potential of COF materials as optoelectronic materials and our understanding of optoelectronic processes,starting from monolayer reticulation chemistry to final 3D stacked structures,thus establishing a new paradigm for the ra-tional design of well-defined novel 2D-COF optoelectronic materials and devices.
基金financially supported by the National Natural Science Foundation of China(Nos.U20A20237,51863005,52271205,51871065,52371218,51863005,52271205,51871065,52371218,51971068,52101245 and 52201206)the Scientific Research and Technology Development Program of Guangxi(Nos.AA19182014,AD17195073,AA17202030-1,AB21220027 and 2021AB17045)+6 种基金the National Natural Science Foundation of Guangxi Province(Nos.2018GXNSFDA281051,2014GXNSFAA118401,2013GXNSFBA019244,2021GXNSFBA075057 and 2022GXNSFB A035632)the Scientific Research and Technology Development Program of Guilin(Nos.20210102-4 and 20210216-1)Guangxi B agui Scholar FoundationGuilin Lijiang Scholar FoundationGuangxi Collaborative Innovation Centre of Structure and Property for New Energy and MaterialsGuangxi Advanced Functional Materials FoundationApplication Talents Small Highlands and Chinesisch Deutsche Kooperationsgruppe(No.GZ1528)。
文摘The conjugation of external species with twodimensional(2D)materials has broad application prospects.In this study,we have explored the potential of noble metal/2D MOF heterostructures in hydrogen storage.Specifically,the MgH_(2)-Ni-MOF@Pd system has shown remarkable hydrogen desorption/sorption performances,starting to liberate hydrogen at 1810C,which is 2300C lower than that of pristine MgH2.Under the catalytic effect of Ni-MOF@Pd,the dehydrogenation apparent activation energy of MgH2 is noticeably decreased from(133.5±17.5)to(34.58±1.87)kJ·moL^(-1),and the hydrogenation apparent activation energy is reduced from(70.41±7.43)to(25.78±4.64)kJ·moL^(-1),which is lowered by 63.4%.The fully-dehydrogenated MgH2-NiMOF@Pd composite rapidly uptakes hydrogen,with 2.62wt%at 100℃and 6.06 wt%at 150℃within 300 s,respectively.The mechanism analysis of MgH2 catalyzed by Ni-MOF@Pd has revealed that the transformation of Mg_2Ni and Mg_2NiH_4 could act as a"hydrogen pump",providing numerous channels for fast diffusion and transport of hydrogen atoms.Moreover,in the dehydrogenation process,the element Pd reacts with MgH_(2)to form the MgPd alloy phase,which makes MgH_(2)take precedence to decompose through the Mg-Pd alloy rather than self-decomposition,further reducing thermal stability and improving de/hydrogenation kinetics.The synergistic effect of Mg-Pd,Mg_2Ni,and the special ultra-thin 2D sheet structure of the additive is the main reason for the good hydrogen storage property of MgH_(2)-Ni-MOF@Pd.Our findings provide inspiration for designing efficient multifunctional additives with unique morphologies to optimize the hydrogen desorption/sorption behaviors of hydrogen storage materials.
基金supported by the Intergovernmental International Cooperation of the National Key R&D Program of China(2022YFE0105300)the National Natural Science Foundation of China(21790374, 22276130, 22176139, 21825601)the New Cornerstone Science Foundation through the XPLORER PRIZE。
文摘The development of adsorbent materials for effective capture of radioactive iodomethane(CH_(3)I) from the off-gas of used nuclear fuel reprocessing, remains a significant and challenging line of research because currently state-of-art adsorbents still suffer from low binding affinity with CH_(3)I. Here, we proposed a brand-new adsorption topological structure by developing a 2D interdigitated layered framework, named SCU-20, featuring slide-like channel with multiple active sites for CH_(3)I capture. The responsive rotating-adaptive aperture of SCU-20 enables the optimal utilization of all active sites within the pore for highly selective recognition and capture of CH_(3)I. A record-breaking CH_(3)I uptake capacity of 1.84 g/g was achieved under static sorption conditions with saturated CH_(3)I vapor. Both experimental and theoretical findings demonstrated that the exceptional uptake of SCU-20 towards CH_(3)I can be attributed to the confined physical electrostatic adsorption of F sites, coupled with the chemical nitrogen methylation reaction with uncoordinated N atoms of pyrazine. Moreover, dynamic CH_(3)I uptake capacity potentially allows for the capture of CH_(3)I in simulated real-world off gas reprocessing conditions. This study highlights the potential of SCU-20 as a promising candidate for efficient capture of iodine species and contributes to the development of effective solutions for radioactive iodine remediation.
基金supported by the National Natural Science Foundation of China(Nos.52350323 and 52105194)the National Postdoctoral Fellowship Program of China(No.GZB20230340)the Project was funded by the China Postdoctoral Science Foundation(Nos.2023TQ0184 and 2023M731941).
文摘Electron energy dissipation is an important energy dissipation pathway that cannot be ignored in friction process.Two-dimensional zeolite imidazole frameworks(2D ZIFs)and fluorine doping strategies give 2D Zn-ZIF and 2D Co-ZIF unique electrical properties,making them ideal materials for studying electron energy dissipation mechanism.In this paper,based on the superlubricity modulation of 2D fluoridated ZIFs,the optimal tribological properties are obtained on the 2D F-Co-ZIF surface,with the friction coefficient as low as 0.0010.Electrical experiments,density functional theory(DFT)simulation,and fluorescence detection are used to explain the mechanism of fluorine doping regulation of tribological properties from the two stages,namely energy transfer and energy release.Specifically,the energy will transfer into the friction system through the generation of electron–hole pairs under an external excitation,and release by radiation and non-radiation energy dissipation channels.Fluorination reduces energy transfer by altering the electronic properties and band structures of ZIFs,and slows down the charge transfer by enhancing the shielding efficiency,thus slowing the non-radiative energy dissipation rate during the energy release stage.Our insights not only help us better understand the role of fluorine doping in improving tribological properties,but also provide a new way to further explore the electron energy dissipation pathway during friction.
基金supported by the National Key Research and Development Program of China(No.2021YFA1600800)the National Natural Science Foundation of China(Nos.11975234,12075243,12005227,12105286,121350122,U2032150,12275271,12205305,and U1932211)+5 种基金the Natural Science Foundation of Anhui Province(Nos.2208085QA14 and 2208085J13)the Users with Excellence Program of Hefei Science Center CAS(Nos.2020HSC-UE002,2020HSC-CIP013,2021HSC-UE002,and 2021HSC-UE003)the Major science and technology project of Anhui Province(No.202103a05020025)the Key Program of Research and Development of Hefei Science Center,CAS(Nos.2021HSC-KPRD002 and 2021HSC-KPRD003)the Fundamental Research Funds for the Central Universities(No.WK 2310000103)partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication.
文摘Discovering more and new geometrically frustrated systems remains an active point of inquiry in fundamental physics for the existence of unusual states of matter.Here,we report spin-liquid-like behavior in a two-dimensional(2D)rhombic lattice Fe-metal-organic framework(Fe-MOF)with frustrated antiferromagnetism.This Fe-MOF exhibits a high frustration factor f=|θCW|/TN≥315,and its long-range magnetic order is suppressed down to 180 mK.Detailed theoretical calculations demonstrate strong antiferromagnetic coupling between adjacent Fe3+ions,indicating the potential of a classical spin-liquid-like behavior.Notably,a T-linear heat capacity parameter,γ,originating from electronic contributions and with magnetic field independence up to 8 T,can be observed in the specific heat capacity measurements at low-temperature,providing further proof for the spin-liquid-like behavior.This work highlights the potential of MOF materials in geometrically frustrated systems,and will promote the research of exotic quantum physics phenomena.