Considering phase changes associated with a high-temperature molten material cooled down from the outside,this work presents an improvement of the modelling and the numerical simulation of such processes for an applic...Considering phase changes associated with a high-temperature molten material cooled down from the outside,this work presents an improvement of the modelling and the numerical simulation of such processes for an application pertaining to the safety of light water nuclear reactors.Postulating a core meltdown accident,the behaviour of the core melt(aka corium)into a steel vessel is of tremendous importance when evaluating the vessel integrity.Evaluating correctly the heat fluxes requires the numerical simulation of the interaction between the liquid material and its solid counterpart which forms during the solidification process,but also may melt back.To simulate this configuration,encoun-tered in various industrial applications,one considers a bi-phase model constituted by a liquid phase in contact and interaction with its solid phase.The liquid phase may solidify in presence of low energetic source,while the solid phase may melt due to an intense heat flux from the high-temperature liquid.In the frame of the in-house legacy code,several simplifying assumptions(0D multi-layer discretization,instantaneous heat transfer via a quadratic temperature profile in solids)are made for the modelling of such phase changes.In the present work,these shortcomings are illustrated and further overcome by solving a 2D heat conduction model in the solid by a mixed Raviart-Thomas finite element method coupled to the liquid phase due to heat and mass exchanges through Stefan condition.The liquid phase is modeled with a 0D multi-layer approach.The 0D-liquid and 2D-solid mod-els are coupled by a Stefan like phase change interface model.Several sanity checks are performed to assess the validity of the approach on 1D and 2D academical configurations for which exact or reference solutions are available.Then more advanced situations(genu-ine multi-dimensional phase changes and an"industrial-like scenario")are simulated to verify the appropriate behavior of the obtained coupled simulation scheme.展开更多
The nose shape effect on long-rod penetration was investigated by establishing numerical 2D models with different original nose shapes.The variations in nose shapes and the mass erosion rate of the rods in the transie...The nose shape effect on long-rod penetration was investigated by establishing numerical 2D models with different original nose shapes.The variations in nose shapes and the mass erosion rate of the rods in the transient phase,primary penetration phase,and secondary penetration phase were adequately analyzed by two dimensionless parameters,i.e.,the nose shape factor N* and the diameter ratio of the rod nose and shank n.In general,N*,η and the mass erosion rate of the rod vary distinctly in different phases,i.e.,unsteady in the initial transient and the secondary penetration phases,and quasi-steady in the primary penetration phase.Furthermore,a relationship between the mass erosion of the rod and the variation in the nose shape was established.A three-phase 2D model of long-rod penetration was further constructed by considering the variations in nose shape.This research may provide a reference to improve the theoretical model of long-rod penetration.展开更多
In engineering practice, single-phase water hammer models are still employed to analyze the water hammer of solid-liquid flow. According to the characteristics of solid-liquid flow, continuity equations and momentum e...In engineering practice, single-phase water hammer models are still employed to analyze the water hammer of solid-liquid flow. According to the characteristics of solid-liquid flow, continuity equations and momentum equations of pseudo-homogeneous flows are deduced, and a pseudo-homogeneous water hammer model is thus built and verified with experiment results. The characteristics of solid-liquid flow’s viscosity, resistance and wave velocity are considered in the model. Therefore, it has higher precision than a single-phase model.展开更多
基金funded by CEA,EDF and Framatomefinancial and scientific support of CEA Cadarache.
文摘Considering phase changes associated with a high-temperature molten material cooled down from the outside,this work presents an improvement of the modelling and the numerical simulation of such processes for an application pertaining to the safety of light water nuclear reactors.Postulating a core meltdown accident,the behaviour of the core melt(aka corium)into a steel vessel is of tremendous importance when evaluating the vessel integrity.Evaluating correctly the heat fluxes requires the numerical simulation of the interaction between the liquid material and its solid counterpart which forms during the solidification process,but also may melt back.To simulate this configuration,encoun-tered in various industrial applications,one considers a bi-phase model constituted by a liquid phase in contact and interaction with its solid phase.The liquid phase may solidify in presence of low energetic source,while the solid phase may melt due to an intense heat flux from the high-temperature liquid.In the frame of the in-house legacy code,several simplifying assumptions(0D multi-layer discretization,instantaneous heat transfer via a quadratic temperature profile in solids)are made for the modelling of such phase changes.In the present work,these shortcomings are illustrated and further overcome by solving a 2D heat conduction model in the solid by a mixed Raviart-Thomas finite element method coupled to the liquid phase due to heat and mass exchanges through Stefan condition.The liquid phase is modeled with a 0D multi-layer approach.The 0D-liquid and 2D-solid mod-els are coupled by a Stefan like phase change interface model.Several sanity checks are performed to assess the validity of the approach on 1D and 2D academical configurations for which exact or reference solutions are available.Then more advanced situations(genu-ine multi-dimensional phase changes and an"industrial-like scenario")are simulated to verify the appropriate behavior of the obtained coupled simulation scheme.
基金supported by the National Natural Science Foundation of China(Grant Nos.11872118 and 12002293).
文摘The nose shape effect on long-rod penetration was investigated by establishing numerical 2D models with different original nose shapes.The variations in nose shapes and the mass erosion rate of the rods in the transient phase,primary penetration phase,and secondary penetration phase were adequately analyzed by two dimensionless parameters,i.e.,the nose shape factor N* and the diameter ratio of the rod nose and shank n.In general,N*,η and the mass erosion rate of the rod vary distinctly in different phases,i.e.,unsteady in the initial transient and the secondary penetration phases,and quasi-steady in the primary penetration phase.Furthermore,a relationship between the mass erosion of the rod and the variation in the nose shape was established.A three-phase 2D model of long-rod penetration was further constructed by considering the variations in nose shape.This research may provide a reference to improve the theoretical model of long-rod penetration.
文摘In engineering practice, single-phase water hammer models are still employed to analyze the water hammer of solid-liquid flow. According to the characteristics of solid-liquid flow, continuity equations and momentum equations of pseudo-homogeneous flows are deduced, and a pseudo-homogeneous water hammer model is thus built and verified with experiment results. The characteristics of solid-liquid flow’s viscosity, resistance and wave velocity are considered in the model. Therefore, it has higher precision than a single-phase model.