It is a research subject in computer vision to 3D reconstruction of an object represented by a single 2D line drawing. Previous works on 3D reconstruction from 2D line drawings focus on objects with lines, plane, view...It is a research subject in computer vision to 3D reconstruction of an object represented by a single 2D line drawing. Previous works on 3D reconstruction from 2D line drawings focus on objects with lines, plane, view, and so on. This paper mainly studies the 3D reconstruction from 2D line drawings. Besides, a new approach is proposed: it is that for the research of the point coordinates of 2D line drawings, so as to achieve the object reconstruction by the reconstruction of point coordinates. The reconstruction process includes: (1) the collection of point coordinates (X,Y) of 2D line drawings; (2) the derivation of mathematical formula about the reconstruction of the point of 2D line drawings, and calculating the corresponding point of the 3D coordinates; (3) the regeneration of 3D graphics with 3D points; (4) analyze error by the proportional of parallel of axonometric projection, in order to prove the accuracy of the method.展开更多
3D printing techniques offer an effective method in fabricating complex radially multi-material structures.However,it is challenging for complex and delicate radially multi-material model geometries without supporting...3D printing techniques offer an effective method in fabricating complex radially multi-material structures.However,it is challenging for complex and delicate radially multi-material model geometries without supporting structures,such as tissue vessels and tubular graft,among others.In this work,we tackle these challenges by developing a polar digital light processing technique which uses a rod as the printing platform.The 3D model fabrication is accomplished through line projection.The rotation and translation of the rod are synchronized to project and illuminate the photosensitive material volume.By controlling the distance between the rod and the printing window,we achieved the printing of tubular structures with a minimum wall thickness as thin as 50 micrometers.By controlling the width of fine slits at the printing window,we achieved the printing of structures with a minimum feature size of 10 micrometers.Our process accomplished the fabrication of thin-walled tubular graft structure with a thickness of only 100 micrometers and lengths of several centimeters within a timeframe of just 100 s.Additionally,it enables the printing of axial multi-material structures,thereby achieving adjustable mechanical strength.This method is conducive to rapid customization of tubular grafts and the manufacturing of tubular components in fields such as dentistry,aerospace,and more.展开更多
文摘It is a research subject in computer vision to 3D reconstruction of an object represented by a single 2D line drawing. Previous works on 3D reconstruction from 2D line drawings focus on objects with lines, plane, view, and so on. This paper mainly studies the 3D reconstruction from 2D line drawings. Besides, a new approach is proposed: it is that for the research of the point coordinates of 2D line drawings, so as to achieve the object reconstruction by the reconstruction of point coordinates. The reconstruction process includes: (1) the collection of point coordinates (X,Y) of 2D line drawings; (2) the derivation of mathematical formula about the reconstruction of the point of 2D line drawings, and calculating the corresponding point of the 3D coordinates; (3) the regeneration of 3D graphics with 3D points; (4) analyze error by the proportional of parallel of axonometric projection, in order to prove the accuracy of the method.
基金supported financially by the Fundamental Research Funds for the Central Universities (YWF-22-K-101,YWF-23-L-805 and YWF-23-YG-QB-006)the support from the National Natural Science Foundation of China (12372106)Fundamental Research Funds for the Central Universities
文摘3D printing techniques offer an effective method in fabricating complex radially multi-material structures.However,it is challenging for complex and delicate radially multi-material model geometries without supporting structures,such as tissue vessels and tubular graft,among others.In this work,we tackle these challenges by developing a polar digital light processing technique which uses a rod as the printing platform.The 3D model fabrication is accomplished through line projection.The rotation and translation of the rod are synchronized to project and illuminate the photosensitive material volume.By controlling the distance between the rod and the printing window,we achieved the printing of tubular structures with a minimum wall thickness as thin as 50 micrometers.By controlling the width of fine slits at the printing window,we achieved the printing of structures with a minimum feature size of 10 micrometers.Our process accomplished the fabrication of thin-walled tubular graft structure with a thickness of only 100 micrometers and lengths of several centimeters within a timeframe of just 100 s.Additionally,it enables the printing of axial multi-material structures,thereby achieving adjustable mechanical strength.This method is conducive to rapid customization of tubular grafts and the manufacturing of tubular components in fields such as dentistry,aerospace,and more.