期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A rapid audio event detection method by adopting 2D-Haar acoustic super feature vector 被引量:1
1
作者 L Ying LUO Senlin +2 位作者 GAO Xiaofang XIE Erman PAN Limin 《Chinese Journal of Acoustics》 CSCD 2015年第2期186-202,共17页
For accuracy and rapidity of audio event detection in the mass-data audio pro- cessing tasks, a generic method of rapidly recognizing audio event based on 2D-Haar acoustic super feature vector and AdaBoost is proposed... For accuracy and rapidity of audio event detection in the mass-data audio pro- cessing tasks, a generic method of rapidly recognizing audio event based on 2D-Haar acoustic super feature vector and AdaBoost is proposed. Firstly, it combines certain number of con- tinuous audio frames to be an "acoustic feature image", secondly, uses AdaBoost.MH or fast Random AdaBoost feature selection algorithm to select high representative 2D-Haar pattern combinations to construct super feature vectors; thirdly, analyzes the commonality and differ- ences between subcategories, then extracts common features and reduces different features to obtain a generic audio event template, which can support the accurate identification of multi- ple sub-classes and detect and locate the specific audio event from the audio stream accurately. Experimental results show that the use of 2D-Haar acoustic feature super vector can make recog- nition accuracy 5% higher than ones that MFCC, PLP, LPCC and other traditional acoustic features yielded, and can make tile training processing 7 20 times faster and the recognition processing 5-10 times faster, it can even achieve an average precision of 93.38%, an average recall of 95.03% under the optimal parameter configuration found by grid method. Above all, it can provide an accurate and fast mass-data processing method for audio event detection. 展开更多
关键词 HAAR A rapid audio event detection method by adopting 2d-haar acoustic super feature vector
原文传递
基于L_(2,1)范数稀疏特征选择和超法向量的深度图像序列行为识别 被引量:4
2
作者 宋相法 张延锋 郑逢斌 《计算机科学》 CSCD 北大核心 2017年第2期306-308,323,共4页
结合L_(2,1)范数稀疏特征选择和超法向量提出了一种新的深度图像序列行为识别方法。首先从深度图像序列中提取超法向量特征;然后利用L_(2,1)范数稀疏特征选择方法从超法向量特征中选择出最具判别性的稀疏特征子集作为特征表示;最后利用... 结合L_(2,1)范数稀疏特征选择和超法向量提出了一种新的深度图像序列行为识别方法。首先从深度图像序列中提取超法向量特征;然后利用L_(2,1)范数稀疏特征选择方法从超法向量特征中选择出最具判别性的稀疏特征子集作为特征表示;最后利用线性分类器Liblinear进行分类。在MSR Action3D数据库上的实验结果表明,所提方法使用2%的超法向量特征获得的识别率为94.55%,并且具有比其他方法更高的识别精度。 展开更多
关键词 行为识别 深度图像序列 超法向量 稀疏特征选择 L2 1范数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部