期刊文献+
共找到44篇文章
< 1 2 3 >
每页显示 20 50 100
基于张量的2D-PCA人脸识别算法 被引量:7
1
作者 叶学义 王大安 +2 位作者 宦天枢 夏经文 顾亚风 《计算机工程与应用》 CSCD 北大核心 2017年第6期1-6,共6页
人脸图像的色彩信息也是人脸的重要特征,但现有的2D-PCA彩色人脸识别忽略了人脸色彩信息的空间关系。由此引入三阶张量表示,提出基于张量的2D-PCA(Tensor PCA)的人脸识别算法。Tensor PCA通过分解n模总体散布矩阵获得三个由最大特征值... 人脸图像的色彩信息也是人脸的重要特征,但现有的2D-PCA彩色人脸识别忽略了人脸色彩信息的空间关系。由此引入三阶张量表示,提出基于张量的2D-PCA(Tensor PCA)的人脸识别算法。Tensor PCA通过分解n模总体散布矩阵获得三个由最大特征值对应的特征向量组成的将张量样本投影到低维子空间的投影矩阵,并构造交替最小二乘法的迭代过程对矩阵进行优化得到最优投影矩阵,使得投影后的样本间的距离尽可能得大,以达到最佳分类识别的效果。Georgia Tech彩色人脸库的测试结果表明,与2D-PCA方法相比,识别正确率提升了5.53%,同时训练时间降低了78.1%。 展开更多
关键词 人脸识别 色彩信息 二维主成分分析(2d-pca) 张量
下载PDF
基于改进的加权分块2D-PCA人脸识别技术的研究 被引量:3
2
作者 余元辉 邓莹 《河南农业大学学报》 CAS CSCD 北大核心 2015年第4期500-504,共5页
比较了PCA(Principal Component Analysis)和2D-PCA(Two-Dimensional Principal Component Analysis)人脸识别算法。在2D-PCA的基础上提出了一种改进算法,即基于整体区域、感兴趣区域与非感兴趣区域的加权分块2D-PCA算法。该算法借助权... 比较了PCA(Principal Component Analysis)和2D-PCA(Two-Dimensional Principal Component Analysis)人脸识别算法。在2D-PCA的基础上提出了一种改进算法,即基于整体区域、感兴趣区域与非感兴趣区域的加权分块2D-PCA算法。该算法借助权值的动态调整,最终实现了最优解。基于知名脸库ORL设计实验来验证文中提出的改进的加权分块2D-PCA算法。分析试验结果表明,发现本算法识别率达到97.5%,较PCA算法提高21.66%,较2D-PCA算法提高10.08%,进一步证实本算法较PCA和2D-PCA显著提高了人脸识别的准确率。 展开更多
关键词 人脸识别 PCA 2d-pca 分块PCA 特征矩阵
下载PDF
基于加权小波变换和2D-PCA的人脸识别改进算法
3
作者 张梦 曾毓敏 李鹏程 《南京师范大学学报(工程技术版)》 CAS 2015年第2期55-59,共5页
基于小波变换的人脸识别方法通常将图像变换成低频和高频信息,传统的人脸识别算法大多数都是基于小波变换后的低频信息,没有充分利用高频信息,造成了高频信息中对识别有利信息的丢失.本文提出了一种基于加权小波变换和2D-PCA的人脸识别... 基于小波变换的人脸识别方法通常将图像变换成低频和高频信息,传统的人脸识别算法大多数都是基于小波变换后的低频信息,没有充分利用高频信息,造成了高频信息中对识别有利信息的丢失.本文提出了一种基于加权小波变换和2D-PCA的人脸识别改进算法.首先基于二维离散小波(2D-DWT)对图像进行二层小波变换,将所得的低频信息和水平、垂直和对角高频信息进行加权融合.在此基础上,采用二维主成分分析(2D-PCA)方法进行特征提取;最后采用最近邻分类器进行分类识别.基于ORL标准人脸数据库的实验结果表明,本文提出的方法比传统的2D-PCD识别算法和2D-DWT+2D-PCA识别算法有更好的识别效果,且人脸受光照等因素的影响表现出良好的鲁棒性. 展开更多
关键词 人脸识别 加权小波变换 2d-pca算法 最近邻分类器
下载PDF
基于分段行列2D-PCA的高光谱图像数据降维方法 被引量:10
4
作者 张筱晗 杨桄 +1 位作者 黄俊华 杨永波 《计算机工程》 CAS CSCD 北大核心 2017年第9期256-262,共7页
针对传统二维主成分分析(2D-PCA)方法不能直接应用于高光谱图像数据降维的不足,提出一种基于分段行列2D-PCA的降维方法。利用高光谱图像波段间的相关系数进行波段子空间划分,在各子空间内通过旋转构建新的数据模型,以2D-PCA方法提取其... 针对传统二维主成分分析(2D-PCA)方法不能直接应用于高光谱图像数据降维的不足,提出一种基于分段行列2D-PCA的降维方法。利用高光谱图像波段间的相关系数进行波段子空间划分,在各子空间内通过旋转构建新的数据模型,以2D-PCA方法提取其行、列主成分信息,经过图像重建得到行、列主成分图像,对各波段子空间的行、列主成分图像进行小波分解,按照不同规则融合低频、高频系数,再通过小波逆变换得到降维后的图像。实验结果表明,与PCA和分段PCA方法相比,该方法在保证降维图像质量的前提下可缩短运算时间,提高高光谱图像的降维效率。 展开更多
关键词 高光谱图像 数据降维 二维主成分分析 波段子空间划分 小波融合
下载PDF
基于2D-PCA特征描述的非负权重邻域嵌入人脸超分辨率重建算法 被引量:7
5
作者 曹明明 干宗良 +2 位作者 崔子冠 李然 朱秀昌 《电子与信息学报》 EI CSCD 北大核心 2015年第4期777-783,共7页
在基于邻域嵌入人脸图像的超分辨率重建算法中,训练和重建均在特征空间进行,因此,特征选择对算法性能具有较大影响。另外,算法模型对重建权重未加限定,导致负数权重出现而产生过拟合效应,使得重建人脸图像质量衰退。考虑到人脸图像的特... 在基于邻域嵌入人脸图像的超分辨率重建算法中,训练和重建均在特征空间进行,因此,特征选择对算法性能具有较大影响。另外,算法模型对重建权重未加限定,导致负数权重出现而产生过拟合效应,使得重建人脸图像质量衰退。考虑到人脸图像的特征选择以及权重符号限定的重要作用,该文提出一种基于2维主成分分析(2DPCA)特征描述的非负权重邻域嵌入人脸超分辨率重建算法。首先将人脸图像分成若干子块,利用K均值聚类获得图像子块的局部视觉基元,并利用得到的局部视觉基元对图像子块分类。然后,利用2D-PCA对每一类人脸图像子块提取特征,并建立高、低分辨率样本库。最后,在重建过程中使用新的非负权重求解方法求取权重。仿真实验结果表明,相比其他基于邻域嵌入人脸超分辨率重建方法,所提算法可有效提高权重的稳定性,减少过拟合效应,其重建人脸图像具有较好的主客观质量。 展开更多
关键词 图像处理 人脸超分辨率重建 邻域嵌入 局部视觉基元 2维主成分分析
下载PDF
基于2D-PCA的两级LDA人脸识别方法 被引量:3
6
作者 王友钊 潘芬兰 黄静 《计算机工程》 CAS CSCD 2014年第9期243-247,共5页
线性鉴别分析(LDA)小样本问题的已有解决方法在构造最优投影子空间时未完整利用LDA的4个信息空间,为此,提出一种基于二维主成分分析(2D-PCA)的两级LDA人脸识别方法。采用减法运算对样本类内散度矩阵和类间散度矩阵的特征值矩阵求逆,以... 线性鉴别分析(LDA)小样本问题的已有解决方法在构造最优投影子空间时未完整利用LDA的4个信息空间,为此,提出一种基于二维主成分分析(2D-PCA)的两级LDA人脸识别方法。采用减法运算对样本类内散度矩阵和类间散度矩阵的特征值矩阵求逆,以解决小样本问题,并连续应用Fisher准则和修改后的Fisher准则连接2个投影子空间,获取包含LDA的4个信息空间的最优投影方向,利用2D-PCA对输入样本做预处理,以减少计算复杂度。在ORL和YALE人脸库上的实验结果表明,该方法虽然训练时间略有增加,但识别率分别为92.5%和95.8%,优于其他常用LDA算法。 展开更多
关键词 线性鉴别分析 直接线性鉴别分析 二维主成分分析 小样本问题 人脸识别 特征提取
下载PDF
基于DCT和2D-PCA的人脸识别算法研究 被引量:2
7
作者 谢红 宁志刚 张磊 《应用科技》 CAS 2009年第6期34-37,共4页
提出了一种对角DCT和模块2DPCA相结合的人脸识别方法.该算法首先将人脸图像转换成对角图像,提取人脸的行、列与结构信息以求解最优识别向量.然后利用DCT压缩以去掉人眼不敏感的中频分量与高频分量,再由IDCT重建人脸图像,这样有限降低了... 提出了一种对角DCT和模块2DPCA相结合的人脸识别方法.该算法首先将人脸图像转换成对角图像,提取人脸的行、列与结构信息以求解最优识别向量.然后利用DCT压缩以去掉人眼不敏感的中频分量与高频分量,再由IDCT重建人脸图像,这样有限降低了所需特征的维数,减少了计算量.然后通过模块2DPCA进行特征提取得到人脸识别特征,最后运用最近邻分类器完成人脸的识别.基于ORL及Yale人脸数据库的实验结果证明了该算法的有效性与稳健性. 展开更多
关键词 离散余弦变换 模块二维主元分析 图像重建 人脸识别
下载PDF
融合2D-PCA及稀疏表示的掌纹识别方法 被引量:5
8
作者 王雷 金炜 +2 位作者 刘箴 何艳 李纲 《光电工程》 CAS CSCD 北大核心 2012年第10期59-64,共6页
提出一种基于稀疏表示的掌纹识别方法,该方法借鉴二维主成分分析(PCA)良好的数据压缩属性和较快的特征提取速度,生成掌纹特征图像。二维PCA不仅克服了一维PCA数据维数过大不易计算的缺点,而且保留了原始图像的数据结构,提取的特征能更... 提出一种基于稀疏表示的掌纹识别方法,该方法借鉴二维主成分分析(PCA)良好的数据压缩属性和较快的特征提取速度,生成掌纹特征图像。二维PCA不仅克服了一维PCA数据维数过大不易计算的缺点,而且保留了原始图像的数据结构,提取的特征能更好的代表原始图像。为了便于稀疏表达,对提取的掌纹特征图像利用一维主成分分析进行二次特征提取,得到训练样本。虽然此处使用了一维PCA,但是由于这是二次特征提取,提取的特征还是保留了原始图像的数据结构,相比单纯的一维PCA,提高了识别率。利用训练样本构造出冗余字典,并采用稀疏表示理论将测试样本表示为字典原子的线性组合,然后根据表示系数的稀疏性与稀疏集中度实现分类识别。由于该方法利用了表达系数的稀疏性,因此减小了算法的时间和空间复杂度。实验表明,针对香港理工大学的MSpalmprints Database,本文方法的识别率较传统方法有明显提高。 展开更多
关键词 稀疏表达 二维主成分分析 掌纹识别
下载PDF
基于多频带2D-PCA的虹膜识别算法 被引量:2
9
作者 董钦科 王相海 《计算机科学》 CSCD 北大核心 2009年第10期280-283,共4页
近年来,二维主分量分析(2D-PCA)和离散小波变换作为图像分析的两种有效方法,受到人们的广泛关注。结合以上两种方法,提出了一种多频带2D-PCA虹膜识别快速算法。该算法首先对虹膜图像做预处理,然后将预处理后的图像做2维离散小波变换,取... 近年来,二维主分量分析(2D-PCA)和离散小波变换作为图像分析的两种有效方法,受到人们的广泛关注。结合以上两种方法,提出了一种多频带2D-PCA虹膜识别快速算法。该算法首先对虹膜图像做预处理,然后将预处理后的图像做2维离散小波变换,取小波系数的两个中频子带作为2D-PCA的输入空间;在训练阶段,求得训练样本输入空间的特征空间并由此得到训练样本的特征向量,形成样本特征库;在识别阶段,计算得到未知样本特征向量;同时为了提高特征向量对图像旋转的鲁棒性,在该阶段进行了基于不同起始角度的归一化处理。最后采用Hamming距离,对未知样本的特征向量在特征库中进行多模板匹配,通过K临法则和阈值法得到识别结果。实验结果验证了所提算法的有效性。 展开更多
关键词 虹膜识别 二维主分量分析 小波 HAMMING距离 旋转不变
下载PDF
12导联高频心电信号的特征提取及聚类 被引量:4
10
作者 万静 张晓瑞 +1 位作者 何云斌 李松 《计算机应用研究》 CSCD 北大核心 2015年第10期2934-2939,共6页
针对心肌梗死(myocardial infarction,MI)12导联高频心电信号(high frequency electrocardiogram,HFECG)全局特征聚类问题,提出了一种计算机自动聚类算法。收集MIT-BIH标准心电数据库中的健康心电信号、早期心肌梗死心电信号、急性期心... 针对心肌梗死(myocardial infarction,MI)12导联高频心电信号(high frequency electrocardiogram,HFECG)全局特征聚类问题,提出了一种计算机自动聚类算法。收集MIT-BIH标准心电数据库中的健康心电信号、早期心肌梗死心电信号、急性期心肌梗死心电信号、近期心肌梗死心电信号进行处理。应用二维主分量判别法(two dimensional principal component analysis,2D-PCA)对12导联HF-ECG进行融合特征提取,并应用基于均方差属性加权的遗传模拟退火K-means改进聚类算法。与常规K-means聚类算法相比,特征值更加简单直观,所提算法平均分类精度有较大提高,能对12导联HF-ECG进行更有效的聚类。 展开更多
关键词 心电信号 聚类 二维主分量判别法 遗传算法 模拟退火 K-MEANS
下载PDF
基于分块2DDCT和(2D)^2PCA的人脸识别 被引量:1
11
作者 李文举 尉秀芹 高连军 《辽宁师范大学学报(自然科学版)》 CAS 2013年第2期174-177,共4页
人脸识别是生物特征识别技术中的重要研究领域,应用前景广阔.研究者们虽然提出了很多人脸识别算法,但其性能仍需进一步改进.为了提高现有人脸识别算法的识别准确率,提出了一种新的基于分块二维离散余弦变换(2DDCT)和双向二维主成分分析(... 人脸识别是生物特征识别技术中的重要研究领域,应用前景广阔.研究者们虽然提出了很多人脸识别算法,但其性能仍需进一步改进.为了提高现有人脸识别算法的识别准确率,提出了一种新的基于分块二维离散余弦变换(2DDCT)和双向二维主成分分析((2D)2PCA)的人脸识别算法.首先,将图像分块,利用2DDCT进行图像压缩,去除冗余信息,并通过逆2DDCT重建图像;其次,通过(2D)2PCA消除图像的行、列相关性,降低特征维数;最后,应用最近邻分类器进行人脸识别,在ORL人脸数据库中的实验证明了本算法的有效性. 展开更多
关键词 人脸识别 二维离散余弦变换 双向二维主成分分析
下载PDF
一种基于双向2DPCA及遗传算法的人脸识别方法 被引量:1
12
作者 董晓庆 陈洪财 +1 位作者 谢森林 曾辉 《华中师范大学学报(自然科学版)》 CAS 北大核心 2014年第5期656-661,共6页
提出了一种双向二维PCA((2D)2PCA)及改进遗传算法(GA)相结合的人脸识别方法.该方法首先利用(2D)2PCA分别从图像的行、列方向进行特征提取,然后通过遗传算法对提取的特征空间以并行的方式进行优化,得到最优行、列特征空间,最后根据最优... 提出了一种双向二维PCA((2D)2PCA)及改进遗传算法(GA)相结合的人脸识别方法.该方法首先利用(2D)2PCA分别从图像的行、列方向进行特征提取,然后通过遗传算法对提取的特征空间以并行的方式进行优化,得到最优行、列特征空间,最后根据最优特征空间进行分类.在ORL人脸库上的实验结果表明,该方法较之传统的方法具有更高的识别率及识别速度,在各种鉴别特征维数下更具鲁棒性,是有效的人脸识别方法. 展开更多
关键词 人脸识别 双向二维PCA((2D)2PCA) 遗传算法(GA) 特征空间
下载PDF
Curvelet变换结合(2D)~2PCA的人脸识别算法 被引量:2
13
作者 赵庆敏 彭雪莹 《南昌大学学报(理科版)》 CAS 北大核心 2018年第2期180-183,共4页
作为一种新的多尺度多方向性的信号分析工具,Curvelet变换不但具有小波变换多尺度和多分辨率的特点,还具有很强的方向性,对包含大量面部轮廓和五官曲线信息的人脸图像能实现最优的稀疏表示。本文提出并实现了一种基于Curvelet变换结合... 作为一种新的多尺度多方向性的信号分析工具,Curvelet变换不但具有小波变换多尺度和多分辨率的特点,还具有很强的方向性,对包含大量面部轮廓和五官曲线信息的人脸图像能实现最优的稀疏表示。本文提出并实现了一种基于Curvelet变换结合双向二维主成分分析((2D)~2PCA)的人脸识别算法,以Yale人脸数据库进行人脸识别实验,结果表明,该算法相对于传统基于小波变换的人脸识别算法,能有效提高识别率,缩短识别时间。 展开更多
关键词 CURVELET变换 小波变换 人脸识别 双向二维主成分分析((2D)^2PCA)
下载PDF
2DPCA在遥感图像压缩中的应用
14
作者 吴学明 杨武年 李灿平 《物探化探计算技术》 CAS CSCD 2008年第4期340-344,266,共5页
Two Dimensional Principal Analysis是新近提出的一种图像分析方法,并已在特征提取与人脸和物体识别中得到较好应用。由于2DPCA本身就具有数据压缩功能,在用于去除图像的空间相关性中,可实现对数据的压缩,尤其是对高光谱或多光谱遥感... Two Dimensional Principal Analysis是新近提出的一种图像分析方法,并已在特征提取与人脸和物体识别中得到较好应用。由于2DPCA本身就具有数据压缩功能,在用于去除图像的空间相关性中,可实现对数据的压缩,尤其是对高光谱或多光谱遥感图像的压缩。实验结果表明,这类方法不仅有效,而且压缩性能良好。 展开更多
关键词 图像压缩 高光谱 PCA 2DPCA
下载PDF
基于2D-LDA的车牌字符识别
15
作者 周洪毅 《数字技术与应用》 2016年第6期97-99,共3页
传统的基于LDA的字符识别需要将图像向量化,这会造成协方差矩阵维数过大和奇异问题,而基于2D-LDA的识别算法能够克服上述传统算法的缺陷。首先介绍了2D-LDA算法的原理;然后,在车牌字符数据集上测试了算法的识别率;最后,与多层感知机神... 传统的基于LDA的字符识别需要将图像向量化,这会造成协方差矩阵维数过大和奇异问题,而基于2D-LDA的识别算法能够克服上述传统算法的缺陷。首先介绍了2D-LDA算法的原理;然后,在车牌字符数据集上测试了算法的识别率;最后,与多层感知机神经网络做了对比,表明2D-LDA算法有较高的识别率。 展开更多
关键词 字符识别 2d-pca 2D-LDA 多层感知机神经网络
下载PDF
基于伪模块2D PCA的人脸识别方法
16
作者 储荣 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第6期856-859,共4页
在模块2D PCA方法的基础上提出了伪模块2D PCA的人脸识别方法.该方法不仅保留了模块2D PCA方法在特征抽取之前无需将图像矩阵转化为图像向量、能快速降低鉴别特征的维数、可以完全避免使用矩阵的奇异值分解等优点,而且在降维的同时尽可... 在模块2D PCA方法的基础上提出了伪模块2D PCA的人脸识别方法.该方法不仅保留了模块2D PCA方法在特征抽取之前无需将图像矩阵转化为图像向量、能快速降低鉴别特征的维数、可以完全避免使用矩阵的奇异值分解等优点,而且在降维的同时尽可能保持了原样本的变化信息,使得降维后的同类数据样本尽可能保持相似.在ORL人脸数据库上的实验结果表明,伪模块2D PCA在识别性能上优于模块2D PCA. 展开更多
关键词 二维主成分分析 模式识别 人脸识别 特征抽取
下载PDF
基于TSFS结合高阶张量特征提取方法的海水半潜油种类鉴别研究 被引量:1
17
作者 孔德明 崔耀耀 +2 位作者 仲美玉 马勤勇 孔令富 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2023年第1期62-69,共8页
半潜油是一种隐藏于海面之下并呈现悬浮状态的溢油,其长期毒害并侵蚀着海洋生态环境。然而,针对半潜油污染到目前还未形成有效地监测手段和处理方式,致使其污染的突发性和危害性更甚于海面溢油。因此,研究有效地半潜油鉴别方法对保护海... 半潜油是一种隐藏于海面之下并呈现悬浮状态的溢油,其长期毒害并侵蚀着海洋生态环境。然而,针对半潜油污染到目前还未形成有效地监测手段和处理方式,致使其污染的突发性和危害性更甚于海面溢油。因此,研究有效地半潜油鉴别方法对保护海洋生态环境具有重要意义。三维荧光光谱技术中的总同步荧光光谱(TSFS)在油类污染物检测与鉴别中具有不存在瑞利散射干扰以及冗余数据少的优势,但由于TSFS数据本身不具备三线性结构,使得多维校正分析方法在其应用上受到了一定的限制。基于此,开展基于TSFS结合高阶张量特征提取方法的海水半潜油种类鉴别研究。首先,利用有机分散剂和六种不同种类的油品配制了90个半潜油实验样本;然后,利用FS920荧光光谱仪采集实验样本的TSFS数据,并对该数据进行标准化预处理;最后,通过高阶张量特征提取方法二维线性判别分析(2D-LDA)以及二维主成分分析(2D-PCA)分别建立了半潜油样本的鉴别模型;并将所建模型与常规方法多元曲线分辨率交替最小二乘法(MCR-ALS)结合线性判别分析(LDA)以及多维偏最小二乘判别分析(NPLS-DA)进行了对比。分析结果表明,2D-LDA和2D-PCA所建立的半潜油样本鉴别模型具有可靠的性能,鉴别模型的精确率、灵敏度及特异性分别为100%,100%和100%。并且,2D-LDA和2D-PCA能够直接提取TSFS光谱图像矩阵在空间、统计学以及图形学上的精细光谱特征,为区分半潜油样本带来更为精准的鉴别依据。因此,相较于常规的基于展开或分解数据的方法,高阶张量特征提取方法所建立鉴别模型所得到的预测结果更加精确。该研究为半潜油种类鉴别提供了一种参考。 展开更多
关键词 半潜油 TSFS 2D-LDA 2d-pca 种类鉴别
下载PDF
基于多通道Log-Gabor小波与(2D)~2 PCALDA的人脸识别方法 被引量:5
18
作者 火元莲 《计算机应用》 CSCD 北大核心 2010年第11期2970-2973,共4页
为了降低光照变化对基于子空间的人脸识别方法性能的影响,结合多通道Log-Gabor策略与(2D)2 PCALDA特征提取方法,提出了一种新的人脸识别方法。将不同尺度与方向作为独立通道,在每个通道内采用(2D)2 PCALDA对人脸图像的Log-Gabor表示进... 为了降低光照变化对基于子空间的人脸识别方法性能的影响,结合多通道Log-Gabor策略与(2D)2 PCALDA特征提取方法,提出了一种新的人脸识别方法。将不同尺度与方向作为独立通道,在每个通道内采用(2D)2 PCALDA对人脸图像的Log-Gabor表示进行特征提取、分类,然后对各通道分类结果进行决策融合得到最终的类别归属。在CAS-PEAL-R1、ORL与Yale人脸数据库上的实验结果表明,该算法具有较好的识别性能。 展开更多
关键词 多通道Log-Gabor 主成分分析 线性判别式分析 (2D)2 PCALDA 人脸识别
下载PDF
基于时频谱图和自适应动态权重PSO-CNN的外破振动信号识别 被引量:3
19
作者 崔岩 方春华 +3 位作者 文中 方萌 游海鑫 郭俊康 《国外电子测量技术》 北大核心 2023年第1期144-152,共9页
为避免地下电缆遭受破坏,提高振动监测系统对外力破坏的预警能力,提出一种基于时频谱图和自适应动态权重粒子群算法-卷积神经网络(PSO-CNN)的外破振动信号识别方法。首先,将振动传感系统获取的3000组外破振动信号转化生成为时频谱图数据... 为避免地下电缆遭受破坏,提高振动监测系统对外力破坏的预警能力,提出一种基于时频谱图和自适应动态权重粒子群算法-卷积神经网络(PSO-CNN)的外破振动信号识别方法。首先,将振动传感系统获取的3000组外破振动信号转化生成为时频谱图数据集,在图像预处理阶段,采用直方图均衡化和二维主成分分析(2D-PCA)算法来增强灰度图像特征并实现图像数据的降维;然后,将图像数据集的70%作为CNN模型的训练集,并在网络训练过程中引入自适应动态惯性权重PSO对CNN模型的卷积层、池化层相关参数进行迭代寻优,从而获得优化PSO-CNN分类模型;最后,利用测试集图像数据对优化PSO-CNN模型的识别性能进行验证,并与其他分类模型进行了对比。结果表明,所提方法对6种常见外破振动信号的识别准确率达到98.33%,平均每张图像的识别时间仅为0.24 s,与其他分类算法相比具有更高的分类精度和更快速的识别速度,为快速准确地识别外力破坏事件类型提供了一种可行方案。 展开更多
关键词 时频谱图 2d-pca降维 惯性权重 卷积神经网络 粒子群优化算法
下载PDF
基于(2D)^2-PCANet的种子图像识别
20
作者 刘彩玲 岳荷荷 《计算机应用与软件》 北大核心 2020年第10期232-238,共7页
PCA算法采用一维向量计算协方差矩阵,再求特征向量,不仅计算量大,而且会破坏图像的二维结构。为此对PCANet进行改进,提出(2D)~2-PCANet。该网络采用(2D)~2-PCA算法计算特征模板,利用二维图像矩阵计算协方差矩阵,然后求特征向量。相比PC... PCA算法采用一维向量计算协方差矩阵,再求特征向量,不仅计算量大,而且会破坏图像的二维结构。为此对PCANet进行改进,提出(2D)~2-PCANet。该网络采用(2D)~2-PCA算法计算特征模板,利用二维图像矩阵计算协方差矩阵,然后求特征向量。相比PCA算法,不仅计算量小,而且会保留更多图像的二维关系。使用(2D)~2-PCANet和PCANet在杂草种子图像数据集上进行实验,结果表明,相比PCANet,该算法取得了更高的识别率,最高为97.04%。进一步采用稀疏正交交换法,通过减小每层图像的重构误差来训练特征模板,相比未进行特征模板训练的网络,识别率提高了0.8%。 展开更多
关键词 图像识别 深度卷积网络 特征模板 (2D)^2-PCA 二维关系 特征训练
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部