期刊文献+
共找到92篇文章
< 1 2 5 >
每页显示 20 50 100
Preparation and oxidation property of ZrB_2-MoSi_2/SiC coating on carbon/carbon composites 被引量:14
1
作者 张武装 曾毅 +2 位作者 GBOLOGAH Lemuel 熊翔 黄伯云 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第7期1538-1544,共7页
To improve the oxidation resistance of carbon/carbon composites,ZrB2-MoSi2/SiC coating on the carbon/carbon substrate was prepared.The inner coating of SiC was prepared by pack cementation and the outer coating of ZrB... To improve the oxidation resistance of carbon/carbon composites,ZrB2-MoSi2/SiC coating on the carbon/carbon substrate was prepared.The inner coating of SiC was prepared by pack cementation and the outer coating of ZrB2-MoSi2 was prepared by slurry painting.The phase compositions and microstructures of the coating were characterized by XRD and SEM,respectively.The preparation and the high temperature oxidation property of the coated composites were investigated.The results show that the outer coating of carbon/carbon composites is composed of ZrB2,MoSi2 and SiC phases.The mass losses of the ZrB2-MoSi2/SiC coated samples with SiC nano-whiskers after 30 h and 10 h of oxidation at 1 273 K and 1 773 K were,respectively,5.3% and 3.0%.The ZrB2-MoSi2/SiC coated samples exhibit self-sealing performance and good oxidation resistance at high temperature. 展开更多
关键词 carbon/carbon composites ZrB2-MoSi2 sic COATING OXIDATION
下载PDF
C/SiC/MoSi_2-SiC-Si multilayer coating for oxidation protection of carbon/carbon composites 被引量:5
2
作者 张雨雷 李贺军 +2 位作者 胡志雄 李克智 张磊磊 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期2118-2122,共5页
C/SiC/MoSi2-SiC-Si oxidation protective multilayer coating for carbon/carbon (C/C) composites was prepared by pack cementation and slurry method. The microstructure, element distribution and phase composition of the... C/SiC/MoSi2-SiC-Si oxidation protective multilayer coating for carbon/carbon (C/C) composites was prepared by pack cementation and slurry method. The microstructure, element distribution and phase composition of the as-received coating were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results show that the multilayer coating was composed of MoSi2, SiC and Si. It could effectively protect C/C composites against oxidation for 200 h with the mass loss of 3.25% at 1873 K in static air. The mass loss of the coated C/C composites results from the volatilization of SiO2 and the formation of cracks and bubble holes in the coating. 展开更多
关键词 C/C composites C/sic MOSI2 sic MULTILAYER COATING OXIDATION
下载PDF
Oxidation behavior of C/C composites with SiC/ZrSiO_4-SiO_2 coating 被引量:3
3
作者 李杨 肖鹏 +2 位作者 李专 罗威 周伟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第2期397-405,共9页
A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock r... A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock resistance. The anti-oxidation properties under different oxygen partial pressures (OPP) and thermal shock resistance of the SZS coating were investigated. The results show that the SZS coated sample under low OPP, corresponding to the ambient air, during isothermal oxidation was 0.54% in mass gain after 111 h oxidation at 1500 ° C and less than 0.03% in mass loss after 50 h oxidation in high OPP, corresponding to the air flow rate of 36 L/h. Additionally, the residual compressive strengths (RCS) of the SZS coated samples after oxidation for 50 h in high OPP and 80 h in low OPP remain about 70% and 72.5% of those of original C/C samples, respectively. Moreover, the mass loss of SZS coated samples subjected to the thermal cycle from 1500 ° C in high OPP to boiling water for 30 times was merely 1.61%. 展开更多
关键词 C/C composite sic/ZrSiO4-SiO2 coating oxygen partial pressure ANTI-OXIDATION thermal shock residual compressive strength
下载PDF
Comparison of effect of SiC and MoS2 on wear behavior of Al matrix composites 被引量:8
4
作者 Mohammad ROUHI Mohammad MOAZAMI-GOUDARZI Mohammad ARDESTANI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第6期1169-1183,共15页
In order to improve dry sliding wear resistance of pure aluminum against steel, aluminum-based composites reinforced with different contents of SiC,MoS2 and SiC/MoS2 particles were synthesized by press and sintering o... In order to improve dry sliding wear resistance of pure aluminum against steel, aluminum-based composites reinforced with different contents of SiC,MoS2 and SiC/MoS2 particles were synthesized by press and sintering of the corresponding powder mixtures. The microstructural evaluations showed a dense microstructure which were in good agreement with the result of density and hardness measurements. The results of pin on disk wear tests performed against an AISI 52100 steel pin at a constant load and sliding velocity showed that there was a critical content for both types of the reinforcements at which the lowest wear rate was obtained, i.e. 10 vol.% and 2 vol.%, respectively,for Al/SiC and Al/MoS2 composites. However,the lowest wear rate and friction of coefficient were attained for Al/10 SiC/2 MoS2 hybrid composite. According to the scanning electron microscope observations, the predominant wear mechanism was changed from adhesion to abrasion mostly whenMoS2 particles were incorporated in the pure aluminum. Mild delamination was identified as the main wear mechanism for Al/SiC and Al/SiC/MoS2 composites. The frictional traces and worn surfaces of Al/SiC/MoS2 composites approached to those of Al/SiC composites,indicating the dominant role of SiC particles in tribological behavior of the hybrid composites. 展开更多
关键词 Al/sic/MoS2 composites microstructure wear mechanism FRICTION
下载PDF
Microstructure, sintering behavior and mechanical properties of SiC/MoSi_2 composites by spark plasma sintering 被引量:1
5
作者 Xin-xin HAN Ya-lei WANG +3 位作者 Xiang XIONG Heng LI Zhao-ke CHEN Wei SUN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第5期957-965,共9页
SiC/MoSi2 composites were synthesized at different temperatures by spark plasma sintering using Mo, Si and SiC powders as raw materials. The phase composition, microstructure and mechanical properties of the as-prepar... SiC/MoSi2 composites were synthesized at different temperatures by spark plasma sintering using Mo, Si and SiC powders as raw materials. The phase composition, microstructure and mechanical properties of the as-prepared composites were investigated and the sintering behavior was also discussed. Results show that SiC/MoSi2 composites are composed of MoSi2, SiC and trace amount of Mo4.8Si3C0.6 phase and exhibit a fine-grain texture. During the synthesis process, there was an evolution from solid phase sintering to liquid phase sintering. When sintered at 1600 °C, the SiC/MoSi2 composites present the most favorable mechanical properties, the Vickers hardness, bending strength and fracture toughness are 13.4 GPa, 674 MPa and 5.1 MPa·m^1/2, respectively, higher 44%, 171%, 82% than those of monolithic MoSi2. SiC can withstand the applied stress as hard phase and retard the rapid propagation of cracks as second phase, which are beneficial to the improved mechanical properties of Si C/MoSi2 composites. 展开更多
关键词 sic/MoSi2 composite MICROSTRUCTURE sintering behavior mechanical properties spark plasma sintering
下载PDF
Microstructure and wear performance of Al5083/CeO_2/SiC mono and hybrid surface composites fabricated by friction stir processing
6
作者 M.AMRA Khalil RANJBAR S.A.HOSSEINI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第5期866-878,共13页
Friction stir processing(FSP) was utilized to produce surface composites by incorporating nano-sized cerium oxide(CeO2) and silicon carbide(SiC) particles individually and in combined form into the Al5083 alloy ... Friction stir processing(FSP) was utilized to produce surface composites by incorporating nano-sized cerium oxide(CeO2) and silicon carbide(SiC) particles individually and in combined form into the Al5083 alloy matrix. The study signified the role of these reinforcements on microstructure and wear behavior of the resultant surface composite layers. The wear characteristics of the resultant mono and hybrid surface composite layers were investigated using a pin-on-disc wear tester at room temperature. The microstructural observations of FSPed regions and the worn out surfaces were performed by optical and scanning electron microscopy. Considerable grain refinement and uniform distribution of reinforcement particles were achieved inside the nugget zone. All the composite samples showed higher hardness and wear resistance compared to the base metal. Among the composite samples, the hybrid composite(Al5083/CeO2/SiC) revealed the highest wear resistance and the lowest friction coefficient, whereas the Al5083/SiC composite exhibited the highest hardness, i.e., 1.5 times as hard as that of the Al5083 base metal. The enhancement in wear behavior of the hybrid composites was attributed to the solid lubrication effect provided by CeO2 particles. The predominant wear mechanism was identified as severe adhesive in non-composite samples, which changed to abrasive wear and delamination in the presence of reinforcing particles. 展开更多
关键词 A15083 alloy friction stir processing CEO2 sic surface composites wear mechanism
下载PDF
Fabrication and Properties of Ti_3SiC_2/SiC Composites
7
作者 YIN Hongfeng FAN Qiang REN Yun ZHANG Junzhan 《China's Refractories》 CAS 2008年第1期10-13,共4页
Ti3SiC2/SiC composites were fabricated by reactive hot pressing method. Effects of hot pressing temperature, the content and particle size of SiC on phase composition, densification, mechanical properties and behavior... Ti3SiC2/SiC composites were fabricated by reactive hot pressing method. Effects of hot pressing temperature, the content and particle size of SiC on phase composition, densification, mechanical properties and behavior of stress-strain of the composites were investigated. The results showed that : ( 1 ) Hot-pressing temperature influenced the phase composition of Ti3SiC2/SiC composites. The flexural strength and fracture toughness of composites increased with hot pressing temperature. (2) It became more difficult for the composites to densify when the content of SiC in composites increased. It need be sintered at higher temperature to get denser composite. The flexural strength and fracture toughness of composites increased when the content of SiC added in composites increased. However, when the content of SiC reached 50 wt%, the flexural strength and fracture toughness of composites decreased due to high content of pore in composites. (3) When the content of SiC was same, Ti3SiC2/SiC composites were denser while the particle size of SiC added in composites is 12. 8 μm compared with the composites that the particle size of SiC added is 3 μm. The flexural strength and fracture toughness of composites increased with the increase of particle size of SiC added in composites. (4) Ti3SiC2/SiC composites were non-brittle fracture at room temperature. 展开更多
关键词 Ti3sic2/sic composite Mechanical property Phase composition
下载PDF
The Microstructures and Properties of SiC/Al_2O_3/Al-Si Composites Prepared by Reactive Penetration
8
作者 周曦亚 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2004年第3期45-47,共3页
The composition, microstructures and properties of SiC /Al-2O-3/Al-Si composites formed by reactive penetration of the molten aluminum into the preforms of SiO-2 and SiC were investigated. The composition of the compo... The composition, microstructures and properties of SiC /Al-2O-3/Al-Si composites formed by reactive penetration of the molten aluminum into the preforms of SiO-2 and SiC were investigated. The composition of the composites was measured by X-ray diffraction (XRD). The microstructures of the composites were also measured by scanning electron microscopy (SEM) and optical microscopy. In addition, the factors affecting the properties of the composites were discussed.The experiments show that the mechanical properties of the composites depend on their relative densities and the sizes of the fillers“SiC grains".The denser the SiC/Al-2O-3/Al-Si composites,the higher their bending strength.As the filler “SiC grains" become fine,the bending strength of the composites increases. 展开更多
关键词 reactive penetration microstructures properties sic /Al_2O_3/Al-Si composites perform
下载PDF
Preparation of SiC_p/Al_2O_3-Al Composites by Directed Metal Oxidation
9
作者 LIN Ying YANG Hai-bo WANG Fen ZHU Jian-feng 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第B12期47-50,共4页
SiCp/Al2O3-Al composites were synthesized by means of direct metal oxidation method. The composition and microstructures of the composites were investigated using X-ray diffraction (XRD), scanning electron microsco... SiCp/Al2O3-Al composites were synthesized by means of direct metal oxidation method. The composition and microstructures of the composites were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and metallurgical microscope. The effects of technical parameters on the properties of the product were analyzed. The results indicate that the composite possesses a dense microstructure, composed of three interpenetrated phases. Of them, SiO2 layer prohibits the powdering of the composites; Mg promotes the wetting and infiltration of the system and Si restricts the interfacial reaction while improving the wetting ability between reinforcement and matrix. 展开更多
关键词 sicD/Al2O3-Al composites directed metal oxidation Al-Mg-Si alloy sic reinforcement
下载PDF
Identification of Growth Promoter to Fabrication SiCp/Al<sub>2</sub>O<sub>3</sub>Ceramic Matrix Composites Prepared by Directed Metal Oxidation of An Al Alloy
10
作者 Malkapuram Devaiah Thodeti Srihari Thankappan Pillai Rajasekharan 《Journal of Minerals and Materials Characterization and Engineering》 2012年第11期1063-1068,共6页
SiC particulates reinforced alumina matrix composites were fabricated using Directed Metal Oxidation (DIMOX) process. Continuous oxidation of an Al-Si-Mg-Zn alloy with different interlayers (dopents) as growth promote... SiC particulates reinforced alumina matrix composites were fabricated using Directed Metal Oxidation (DIMOX) process. Continuous oxidation of an Al-Si-Mg-Zn alloy with different interlayers (dopents) as growth promoters, will encompasses the early heating of the alloy ingot, melting and continued heating to temperature in the narrow range of 950°C to 980°C in an atmosphere of oxygen. Varying interlayers (dopents) are incorporated to examine the growth conditions of the composite materials and to identification of suitable growth promoter. The process is extremely difficult because molten aluminum does not oxidize after prolonged duration at high temperatures due to the formation of a passivating oxide layer. It is known that the Lanxide Corporation had used a combination of dopents to cause the growth of alumina from molten metal. This growth was directed, i.e. the growth is allowed only in the required direction and restricted in the other directions. The react nature of the dopants was a trade secret. Though it is roughly known that Mg and Si in the Al melt can aid growth, additional dopents used, the temperatures at which the process was carried out, the experimental configurations that aided directed growth were not precisely known. In this paper we have evaluated the conditions in which composites can be grown in large enough sizes for evaluation application and have arrived at a procedure that enables the fabrication of large composite samples by determining the suitable growth promoter (dopant). Scanning electron microscopic, EDS analysis of the composite was found to contain a continuous network of Al2O3, which was predominantly free of grain-boundary phases, a continuous network of Al alloy. Fabrication of large enough samples was done only by the inventor company and the property measurements by the company were confirmed to those needed to enable immediate applications. Since there are a large number of variable affecting robust growth of the composite, fabrication large sized samples for measurements is a difficult task. In the present work, to identify a suitable window of parameters that enables robust growth of the composite has been attempted. 展开更多
关键词 Ceramic-Matrix composites Scanning Electron Microscopy Liquid Metal INFILTRATION Al2O3 sic
下载PDF
化学气相渗透2D-SiCf/SiC复合材料的蠕变性能及损伤机理 被引量:6
11
作者 王西 王克杰 +3 位作者 柏辉 宋卓林 王波 张程煜 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2020年第7期817-821,共5页
研究了采用化学气相渗透工艺制备2D-SiCf/SiC复合材料的真空蠕变性能,蠕变温度为1200、1300和1400℃,应力水平范围为100~140 MPa。用扫描电子显微镜(SEM)和高分辨透射电子显微镜(TEM)分别观察分析了2D-SiCf/SiC复合材料的蠕变断口形貌... 研究了采用化学气相渗透工艺制备2D-SiCf/SiC复合材料的真空蠕变性能,蠕变温度为1200、1300和1400℃,应力水平范围为100~140 MPa。用扫描电子显微镜(SEM)和高分辨透射电子显微镜(TEM)分别观察分析了2D-SiCf/SiC复合材料的蠕变断口形貌和微观结构。结果表明,2D-SiCf/SiC复合材料的主要蠕变损伤模式包括基体开裂、界面脱粘和纤维蠕变。桥接裂纹的纤维发生蠕变并促进了基体裂纹的张开、位移增大,进一步导致复合材料蠕变断裂,在复合材料蠕变过程中起决定性作用。2D-SiCf/SiC复合材料的蠕变性能与SiC纤维微观结构的稳定性密切相关。在1200℃/100 MPa时,纤维晶粒没有长大,复合材料的蠕变断裂时间大于200 h;蠕变温度为1400℃时,纤维晶粒明显长大, 2D-SiCf/SiC复合材料蠕变断裂时间缩短至8.6 h,稳态蠕变速率增大了三个数量级。 展开更多
关键词 2d-sicf/sic复合材料 蠕变性能 蠕变损伤 sic纤维
下载PDF
Copper-Ti_3SiC_2 composite powder prepared by electroless plating under ultrasonic environment 被引量:11
12
作者 ZHANG Zhongbao XU Shaofan 《Rare Metals》 SCIE EI CAS CSCD 2007年第4期359-364,共6页
In this article, a new type of Cu-Ti3SiC2 composite powder prepared using the electroless plating technique was introduced. The initial Ti3SiC2 particles are 11 μm in diameter on an average. The Cu plating was carrie... In this article, a new type of Cu-Ti3SiC2 composite powder prepared using the electroless plating technique was introduced. The initial Ti3SiC2 particles are 11 μm in diameter on an average. The Cu plating was carried out at middle temperature (62-65℃) with the application of ultrasonic agitation. The copper deposition rate was determined by measuring the weight gain of the powder after plating. It has been found that the pretreatment of Ti3SiC2 powder is very important to obtain copper nanoparticles on the surface of Ti3SiC2 The optimum procedure before plating aimed to add activated sites and the adjustment of the traditional composition of the electroless copper plating bath could decelerate the copper deposition rate to 0.8 gm/h. X-ray diffraction (XRD) indicates that the chemical composition of the plating layer is copper. SEM images show that the surface of the Ti3SiC2 particles is successfully coated with continuous copper layer. The wetting property between the copper matrix and Ti3SiC2 can be improved so as to increase the interfacial strength. 展开更多
关键词 composites electroless plating TI3sic2 ULTRASONIC interfacial strength
下载PDF
Effect of SiC particle addition on microstructure of Mg_2Si/Al composite 被引量:8
13
作者 Zhao Yuguang Liu Xiaobo +1 位作者 Yang Yuanyuan Bian Tianjun 《China Foundry》 SCIE CAS 2014年第2期91-97,共7页
In the present study, by adding SiC particles into AI-Si-Mg melt, Mg2Si and SiC particles hybrid reinforced AI matrix composites were fabricated through the Mg2Si in situ synthesis in melt combined with the SiC ex sit... In the present study, by adding SiC particles into AI-Si-Mg melt, Mg2Si and SiC particles hybrid reinforced AI matrix composites were fabricated through the Mg2Si in situ synthesis in melt combined with the SiC ex situ stir casting. The as-cast microstructure containing primary Mg2Si and SiC particles that distribute homogenously in AI matrix was successfully achieved. The effects of SiC particle addition on the microstructure of Mg2Si/AI composites were investigated by using scanning electron microscopy (SEM) and XRD. The results show that, with increasing the fraction of the SiC particles from 5wt.% to 10wt.%, the morphologies of the primary Mg2Si particulates in the prepared samples remain polygonal, but the size of the primary phase decreases slightly. However, when the SiC particle addition reaches 15wt.%, the morphologies of the primary Mg2Si particulates change partially from polygonal to quadrangular with a decrease in size from 50 pm to 30 μm. The size of primary AI dendrites decreases with increasing fraction of the SiC particles from 0wt.% to 15wt.%. The morphology of the eutectic Mg2Si phase changes from a fiber-form to a short fiber-form and/or a dot-like shape with increasing fraction of the SiC particles. Furthermore, no significant change in dendrite arm spacing (DAS) was observed in the presence of SiC particles. 展开更多
关键词 Mg2Si/Al matrix composite sic particles MICROSTRUCTURE solidifi cation
下载PDF
Mechanical Properties and Microstructure of Al_(2)O_(3)/SiC Composite Ceramics for Solar Heat Absorber 被引量:1
14
作者 WU Jianfeng ZHOU Yang +3 位作者 SUN Mengke XU Xiaohong TIAN Kezhong YU Jiaqi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2021年第5期615-623,共9页
Al_(2)O_(3)/SiC composite ceramics were prepared fromα-Al_(2)O_(3) and SiC by a pressureless sinter method in this study.The effect of SiC contents on the mechanic properties,phase compositions and microstructure is ... Al_(2)O_(3)/SiC composite ceramics were prepared fromα-Al_(2)O_(3) and SiC by a pressureless sinter method in this study.The effect of SiC contents on the mechanic properties,phase compositions and microstructure is studied.Experimental results show that the vickers hardness,wear resistance and thermal conductivity of the samples increase with the increase in the SiC content,and the hardness of the sample reaches 16.22 GPa,and thermal conductivity of the sample reaches 25.41 W/(m.K)at room temperature when the SiC content is 20 wt%(B5)and the sintering temperature is at 1640℃.Higher hardness means higher scour resistance,and it indicates that the B5 material is expected to be used for the solar heat absorber of third generation solar thermal generation.The results indicate the mechanism of improving mechanical properties of Al_(2)O_(3)/SiC composite ceramics:SiC plays a role in grain refinement that the grain of SiC inhibits the grain growth of Al_(2)O_(3),while the addition of SiC changes the fracture mode from the intergranular to the intergranular-transgranular. 展开更多
关键词 Al_(2)O_(3)/sic composite ceramics HARDNESS thermal conductivity solar heat absorption material
下载PDF
碳热还原氮化硅藻土制备Si_(2)N_(2)O/SiC复合粉体
15
作者 万赣 匡猛 +3 位作者 黄思源 张琎珺 王平 张声洲 《硅酸盐通报》 CAS 北大核心 2024年第7期2680-2684,共5页
氧氮化硅(Si_(2)N_(2)O)是性能优良的耐火材料和高温结构材料,具有优异的抗蠕变性、耐腐蚀性和抗氧化性等优点。本工作利用硅藻土作为硅源,乙炔炭黑作为还原剂,通过碳热还原氮化法在硅藻土表面原位合成Si_(2)N_(2)O/SiC复合粉体。采用X... 氧氮化硅(Si_(2)N_(2)O)是性能优良的耐火材料和高温结构材料,具有优异的抗蠕变性、耐腐蚀性和抗氧化性等优点。本工作利用硅藻土作为硅源,乙炔炭黑作为还原剂,通过碳热还原氮化法在硅藻土表面原位合成Si_(2)N_(2)O/SiC复合粉体。采用X射线衍射(XRD)分析、扫描电子显微镜(SEM)和N_(2)吸附/脱附等温线对样品进行表征。结果表明,在原料配比m(硅藻土)∶m(乙炔炭黑)=1∶1条件下,1 450℃煅烧4 h后,SiO_(2)完全转变成Si_(2)N_(2)O和β-SiC物相,样品整体呈球状形貌,大颗粒周围分布大量片层状小颗粒,并存在介孔结构。Si_(2)N_(2)O/SiC复合粉体作为性能优良的高温结构材料,有望在结构复合材料中得到广泛的应用。 展开更多
关键词 Si_(2)N_(2)O/sic 硅藻土 碳热还原氮化法 多孔结构 高温结构材料 复合粉体
下载PDF
Al_(2)O_(3)膜对高温环境下NiCrAlY-SiC复合镀层内部反应的阻隔及涂层耐磨性研究
16
作者 黄凌峰 刘建明 +2 位作者 王帅 郭睿 章德铭 《中国科技论文》 CAS 2024年第3期376-381,共6页
为了解决以SiC颗粒为磨料的叶尖耐磨复合镀层在高温工况下SiC与涂层中Ni元素反应导致涂层耐磨性下降等问题,采用化学气相沉积(chemicalvapor deposition,CVD)工艺方法在SiC颗粒表面制备了Al_(2)O_(3)膜以阻隔SiC与涂层中Ni元素的反应。... 为了解决以SiC颗粒为磨料的叶尖耐磨复合镀层在高温工况下SiC与涂层中Ni元素反应导致涂层耐磨性下降等问题,采用化学气相沉积(chemicalvapor deposition,CVD)工艺方法在SiC颗粒表面制备了Al_(2)O_(3)膜以阻隔SiC与涂层中Ni元素的反应。研究了0.5~1.0μm和5.0~10.0μm这2种厚度范围的Al_(2)O_(3)膜对NiCrAlY-SiC@Al_(2)O_(3)叶尖耐磨镀层中SiC颗粒与NiCrAlY镀层在1100℃高温环境下反应的阻隔效果,并测试了2种Al_(2)O_(3)膜厚度的NiCrAlY-SiC@Al_(2)O_(3)叶尖耐磨镀层在1100℃高温环境下保温500 h后的耐磨性。结果显示,5.0~10.0μm厚度的Al_(2)O_(3)膜可有效阻隔SiC颗粒与NiCrAlY镀层的高温反应,使NiCrAlY-SiC@Al_(2)O_(3)涂层在1100℃高温环境下保持良好的耐磨性,并与ZrO2陶瓷封严涂层形成良好的对磨匹配效果。 展开更多
关键词 镍铬铝钇复合镀层 氧化铝膜 碳化硅 磨料叶尖
下载PDF
表面电性对TiO_(2)纳米管-SiC复合填料去除养殖废水中氨氮效率的影响研究
17
作者 洪泽 欧阳晶莹 +1 位作者 李佳欣 郑瀚 《饲料研究》 CAS 北大核心 2024年第19期75-79,共5页
试验旨在探究二氧化钛(TiO_(2))纳米管-碳化硅(SiC)复合填料在净化养殖废水方面的性能。试验采用不同前驱体通过碱性水热合成方法合成3种不同粒径和晶相的TiO_(2)纳米管,测试了3种TiO_(2)纳米管的表面电性、X射线衍射图谱和场发射扫描... 试验旨在探究二氧化钛(TiO_(2))纳米管-碳化硅(SiC)复合填料在净化养殖废水方面的性能。试验采用不同前驱体通过碱性水热合成方法合成3种不同粒径和晶相的TiO_(2)纳米管,测试了3种TiO_(2)纳米管的表面电性、X射线衍射图谱和场发射扫描电镜。研究TiO_(2)纳米管负载于SiC片上并覆盖微生物膜后,在紫外光照射和黑暗条件下去除养殖废水中氨氮污染物的性能。结果表明,晶相为锐钛矿的前驱体合成的TiO_(2)纳米管表面带负电,晶相为金红石和锐钛矿混合的前驱体合成的TiO_(2)纳米管表面带正电,而表面带正电的TiO_(2)纳米管能促进带生物负电的微生物的挂膜,进而促进对养殖废水中氨氮的去除作用;其中,负载P25 TiO_(2)纳米管的SiC片对氨氮的去除率在紫外光照射和黑暗条件下的去除率分别为86.1%和58.9%。研究表明,与黑暗条件相比,紫外光照射会影响TiO_(2)的光催化活性并提高TiO_(2)纳米管-SiC复合填料去除养殖废水中氨氮的效率。 展开更多
关键词 TiO_(2)纳米管-sic复合填料 表面电性 光催化协同 氨氮去除效率
下载PDF
SiC_(f)/SiC复合材料表面Si/Yb_(2)Si_(2)O_(7)涂层1350℃抗热冲击和抗热冲刷性能研究
18
作者 陈易诚 邓杨芳 +3 位作者 张乐 韦林 李其连 周国栋 《材料保护》 CAS CSCD 2024年第8期58-64,104,共8页
为了研究Si/Yb_(2)Si_(2)O_(7)涂层在1350℃条件下的抗热冲击和抗热冲刷性能,首先在SiC_(f)/SiC复合材料上采用真空等离子喷涂技术制备了Si/Yb_(2)Si_(2)O_(7)涂层,并采用金相、物相、SEM、EDS、燃气热冲击设备和燃气热冲刷设备对试样... 为了研究Si/Yb_(2)Si_(2)O_(7)涂层在1350℃条件下的抗热冲击和抗热冲刷性能,首先在SiC_(f)/SiC复合材料上采用真空等离子喷涂技术制备了Si/Yb_(2)Si_(2)O_(7)涂层,并采用金相、物相、SEM、EDS、燃气热冲击设备和燃气热冲刷设备对试样进行了结构及性能表征。结果表明:涂层与SiC_(f)/SiC复合材料的结合强度为25.01 MPa。经过1350℃燃气热冲击1000次,1350℃、550 m/s燃气热冲刷1 h后,Yb_(2)Si_(2)O_(7)涂层的表面物相均主要为Yb_(2)Si_(2)O_(7)、Yb_(2)SiO_(5)、Yb_(2)O_(3)和SiO_(2),抗热冲击和抗热冲刷2项性能测试结果均达设计要求。涂层结合强度很高,复合材料、Si层和Yb_(2)Si_(2)O_(7)层耐高温且热匹配性能较好,且面层的抗燃气腐蚀能力很强,是涂层热冲击、热冲刷性能良好的主要原因。燃气热冲刷的燃气燃烧时间比燃气热冲击的总时间短,且热冲刷为恒温连续冲刷,无冷热的剧烈交替变化,故燃气冲刷后涂层边缘处靠近工装装卡的地方未见明显开裂,且连续冲刷后的黑色烧蚀区域较燃气热冲击的面积小。 展开更多
关键词 sicf/sic复合材料 Si/Yb_(2)Si_(2)O_(7)涂层 真空等离子喷涂 抗热冲击 抗热冲刷
下载PDF
Effects of Co_(2)O_(3)Addition on Microstructure and Properties of SiC Composite Ceramics for Solar Absorber and Storage
19
作者 ZHOU Yang WU Jianfeng +3 位作者 TIAN Kezhong XU Xiaohong MA Sitong LIU Shaoheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第6期1269-1277,共9页
SiC composite ceramics for solar absorber and storage integration are new concentrating solar power materials.SiC composite ceramics for solar absorber and storage integration were fabricated using SiC,black corundum ... SiC composite ceramics for solar absorber and storage integration are new concentrating solar power materials.SiC composite ceramics for solar absorber and storage integration were fabricated using SiC,black corundum and kaolin as the raw materials,Co_(2)O_(3)as the additive via pressureless graphite-buried sintering method in this study.Influences of Co_(2)O_(3)on the microstructure and properties of SiC composite ceramics for solar absorber and storage integration were studied.The results indicate that sample D2(5wt%Co_(2)O_(3))sintered at 1480℃exhibits optimal performances for 119.91 MPa bending strength,93%solar absorption,981.5 kJ/kg(25-800℃)thermal storage density.The weight gain ratio is 12.58 mg/cm2after 100 h oxidation at 1000℃.The Co_(2)O_(3)can decrease the liquid phase formation temperature and reduce the viscosity of liquid phase during sintering.The liquid with low viscosity not only promotes the elimination of pores to achieve densification,but also increases bending strength,solar absorption,thermal storage density and oxidation resistance.A dense SiO_(2) layer was formed on the surface of SiC after 100 h oxidation at 1000℃,which protects the sample from further oxidation.However,excessive Co_(2)O_(3)will make the microstructure loose,which is disadvantageous to the performances of samples. 展开更多
关键词 sic composite ceramics Co_(2)O_(3) microstructure solar absorption thermal storage density
下载PDF
浆料涂刷-热压法制备2D C_(f)-ZrB_(2)-SiC复合材料的力学与烧蚀性能
20
作者 李天佑 曾毅 +2 位作者 胡锦润 易波超 高萌 《粉末冶金材料科学与工程》 2024年第4期275-289,共15页
连续碳纤维增强ZrB_(2)-SiC复合材料以其优异的抗氧化、抗烧蚀性能在航天飞行器热防护结构材料领域备受关注。本文采用浆料涂刷−热压法制备2D C_(f)-ZrB_(2)-SiC复合材料,探索运用微米级粉末浆料制备2D C_(f)-ZrB_(2)-SiC复合材料的可行... 连续碳纤维增强ZrB_(2)-SiC复合材料以其优异的抗氧化、抗烧蚀性能在航天飞行器热防护结构材料领域备受关注。本文采用浆料涂刷−热压法制备2D C_(f)-ZrB_(2)-SiC复合材料,探索运用微米级粉末浆料制备2D C_(f)-ZrB_(2)-SiC复合材料的可行性,研究烧结温度对材料微观结构与力学性能的影响,并测试材料的抗烧蚀性能。结果表明:采用微米粉末浆料涂刷−热压法制备的2D C_(f)-ZrB_(2)-SiC复合材料于2000℃烧结后具有最高的致密度与抗弯强度,开孔率达到8.01%,抗弯强度达到191.3 MPa;复合材料表现出较好的抗烧蚀性能,材料表面响应温度达到2600℃,经300 s等离子火焰烧蚀后线烧蚀率为3.51μm/s。 展开更多
关键词 2D C_(f)-ZrB_(2)-sic复合材料 浆料涂刷 热压 力学性能 烧蚀性能
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部