Periodic solution of m order linear neutral equations with constant coefficient and time delays was studied. Existence and uniqueness of 2 T-periodic solutions for the equation were discussed by using the method of Fo...Periodic solution of m order linear neutral equations with constant coefficient and time delays was studied. Existence and uniqueness of 2 T-periodic solutions for the equation were discussed by using the method of Fourier series. Some new necessary and sufficient conditions of existence and uniqueness of 2 T-periodic solutions for the equation are obtained. The main result is used widely. It contains results in some correlation paper for its special case, improves and extends the main results in them. Existence of periodic solution for the equation in larger number of particular case can be checked by using the result, but cannot be checked in another paper. In other words, the main result in this paper is most generalized for (1) the better result cannot be found by using the same method.展开更多
This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional ...This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional Hirota-Satsuma-Ito equation are obtained,which are all related to the seed solution of the equation.It is interesting that the rogue wave is aroused by the interaction between one-lump soliton and a pair of resonance stripe solitons,and the fusion and fission phenomena are also found in the interaction between lump solitons and one-stripe soliton.Furthermore,the breather wave solution is also obtained by reducing the two-soliton solutions.The trajectory and period of the one-order breather wave are analyzed.The corresponding dynamical characteristics are demonstrated by the graphs.展开更多
For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits ...For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.展开更多
For a highly efficient recycling of a wastewater containing a high concentration of MgCl_2,Al(Ⅲ)and P507 were scheduled to be removed in advance.In this study,the in-situ removal of Al(Ⅲ)and P507 from a high concent...For a highly efficient recycling of a wastewater containing a high concentration of MgCl_2,Al(Ⅲ)and P507 were scheduled to be removed in advance.In this study,the in-situ removal of Al(Ⅲ)and P507 from a high concentration MgCl_(2)solution at different pH values and Al/P molar ratios was investigated.The results showed that P507 formed organic complexes of Al_x(OH)_y~(Z+)-P507 at pH of 2.0-4.0.At pH of 4.0-5.0,Al(Ⅲ)precipitated and transferred into Al(OH)_(3)with a flocculent amorphous morphology.Active sites on the Al(OH)_(3)surface enhanced the removal efficiency of P507.At pH of 6.0-6.5,Al(Ⅲ)and Mg(Ⅱ)formed layered crystalline Al(OH)_(3)and MgAl_2(OH)_(8with)small pore channels and fewer active sites,resulting in a reduced removal efficiency of P507.When the Al/P molar ratio exceeded 13 and the pH was between 4.0 and 5.0,the removal rates of both Al(Ⅲ)and P507 were higher than98%,while the concentration loss of Mg(Ⅱ)was only 0.2%-0.9%.展开更多
Iron‐based pyrophosphates are attractive cathodes for sodium‐ion batteries due to their large framework,cost‐effectiveness,and high energy density.However,the understanding of the crystal structure is scarce and on...Iron‐based pyrophosphates are attractive cathodes for sodium‐ion batteries due to their large framework,cost‐effectiveness,and high energy density.However,the understanding of the crystal structure is scarce and only a limited candidates have been reported so far.In this work,we found for the first time that a continuous solid solution,Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2)(0≤α≤1,could be obtained by mutual substitution of cations at center‐symmetric Na3 and Na4 sites while keeping the crystal building blocks of anionic P_(2)O_(7) unchanged.In particular,a novel off‐stoichiometric Na_(3)Fe(2.5)(P_(2)O_(7))_(2)is thus proposed,and its structure,energy storage mechanism,and electrochemical performance are extensively investigated to unveil the structure–function relationship.The as‐prepared off‐stoichiometric electrode delivers appealing performance with a reversible discharge capacity of 83 mAh g^(−1),a working voltage of 2.9 V(vs.Na^(+)/Na),the retention of 89.2%of the initial capacity after 500 cycles,and enhanced rate capability of 51 mAh g^(−1)at a current density of 1600 mA g^(−1).This research shows that sodium ferric pyrophosphate could form extended solid solution composition and promising phase is concealed in the range of Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2),offering more chances for exploration of new cathode materials for the construction of high‐performance SIBs.展开更多
This paper presents a study on CO<sub>2</sub> atmospheric transformation which was reacted directly with lithium hydroxide solution and metallic lithium. This solution was obtained through the reaction bet...This paper presents a study on CO<sub>2</sub> atmospheric transformation which was reacted directly with lithium hydroxide solution and metallic lithium. This solution was obtained through the reaction between metallic lithium and deionized water where hydrogen is produced and by exposing the metal at ambient conditions. In the transformation process, atmospheric CO<sub>2</sub> gas reacts directly with LiOH solution, in both cases, the CO<sub>2</sub> transformation kinetics was different. For this purpose, reactions between CO<sub>2</sub> and LiOH solution were carried out under controlled temperature and the second process only with metallic lithium, which was exposed at room temperature, however, in these two processes lithium carbonate oxide was formed and identified. According to the results, the efficiency in CO<sub>2</sub> transformation is a function of temperature value which was variable until completely obtaining the by-product, its XRD characterization indicated the formation only of Li<sub>2</sub>CO<sub>3</sub> in both procedures. Under laboratory conditions lithium compounds selectively reacted with CO<sub>2</sub>. In the same way, there is an alternative procedure to obtain LiOH and Li<sub>2</sub>CO<sub>3</sub> for different applications in various areas.展开更多
In this paper,we are concerned with solutions to the fractional Schrodinger-Poisson system■ with prescribed mass ∫_(R^(3))|u|^(2)dx=a^(2),where a> 0 is a prescribed number,μ> 0 is a paremeter,s ∈(0,1),2 <...In this paper,we are concerned with solutions to the fractional Schrodinger-Poisson system■ with prescribed mass ∫_(R^(3))|u|^(2)dx=a^(2),where a> 0 is a prescribed number,μ> 0 is a paremeter,s ∈(0,1),2 <q <2_(s)^(*),and 2_(s)^(*)=6/(3-2s) is the fractional critical Sobolev exponent.In the L2-subcritical case,we show the existence of multiple normalized solutions by using the genus theory and the truncation technique;in the L^(2)-supercritical case,we obtain a couple of normalized solutions by developing a fiber map.Under both cases,to recover the loss of compactness of the energy functional caused by the doubly critical growth,we need to adopt the concentration-compactness principle.Our results complement and improve upon some existing studies on the fractional Schrodinger-Poisson system with a nonlocal critical term.展开更多
This article investigates the Hirota-Satsuma-Ito equation with variable coefficient using the Hirota bilinear method and the long wave limit method.The equation is proved to be Painlevé integrable by Painlevé...This article investigates the Hirota-Satsuma-Ito equation with variable coefficient using the Hirota bilinear method and the long wave limit method.The equation is proved to be Painlevé integrable by Painlevé analysis.On the basis of the bilinear form,the forms of two-soliton solutions,three-soliton solutions,and four-soliton solutions are studied specifically.The appropriate parameter values are chosen and the corresponding figures are presented.The breather waves solutions,lump solutions,periodic solutions and the interaction of breather waves solutions and soliton solutions,etc.are given.In addition,we also analyze the different effects of the parameters on the figures.The figures of the same set of parameters in different planes are presented to describe the dynamical behavior of solutions.These are important for describing water waves in nature.展开更多
In this study, we will introduce the modified (G'/G<sup>2</sup>)-expansion method to explore some of the exact traveling wave solutions of some nonlinear partial differential equations namely, Phi-4 eq...In this study, we will introduce the modified (G'/G<sup>2</sup>)-expansion method to explore some of the exact traveling wave solutions of some nonlinear partial differential equations namely, Phi-4 equation, Joseph-Egri (TRLW) equation, and Calogro-Degasperis (CD) equation. As a result, we have obtained solutions for the equations expressed in terms of trigonometric, hyperbolic and rational functions. Moreover, some selected solutions are plotted using some specific values for the parameters.展开更多
The selective recovery of lead from the zinc oxide dust using an alkaline Na2EDTA solution was investigated. The effects of temperature, leaching time, Na2EDTA concentration and initial NaOH concentration on the leach...The selective recovery of lead from the zinc oxide dust using an alkaline Na2EDTA solution was investigated. The effects of temperature, leaching time, Na2EDTA concentration and initial NaOH concentration on the leaching rates of lead and zinc were studied. The following optimized leaching conditions were obtained: liquid-to-solid ratio 5:1 mL/g, stirring speed 650 r/min, Na2EDTA concentration 0.12 mol/L, initial NaOH concentration 0.5 mol/L, leaching temperature 70 ℃, leaching time 120 min. Under the optimized conditions, the average leaching rates of lead, zinc, fluoride and chloride are 89.92%, 0.94%, 62.84% and 90.02%, respectively. The filtrate was used to electrowin lead powders. The average current efficiency of electrowinning is about 93% and lead content is higher than 98% under the conditions of temperature of 60 ℃, current density of 200 A/m2, H3PO4 concentration of 1.5 g/L, and lead ion concentration of above 5 g/L. The consumption of Na2EDTA and the direct current are about respectively 0.218 kg and 0.958 kW·h for per kilogram of lead powder.展开更多
The synthesis of sodium ferrite and its desulfurization performance in S2 -bearing sodium aluminate solutions were investigated. The thermodynamic analysis shows that the lowest temperature is about 810 K for synthesi...The synthesis of sodium ferrite and its desulfurization performance in S2 -bearing sodium aluminate solutions were investigated. The thermodynamic analysis shows that the lowest temperature is about 810 K for synthesizing sodium ferrite by roasting the mixture of ferric oxide and sodium carbonate. The results indicate that the formation process of sodium ferrite can be completed at 1173 K for 60 min, meanwhile raising temperature and reducing NazCO3 particle size are beneficial to accelerating the formation of sodium ferrite. Sodium ferrite is an efficient desulfurizer to remove the S2- in aluminate solution, and the desulfurization rate can reach approximately 70% at 373 K for 60 min with the molar ratio of iron to sulfur of 1:1-1.5:1. Furthermore, the desulfurization is achieved by NaFeS2·2H2O precipitation through the reaction of Fe(OH)4 and S^2- in aluminate solution, and the desulfurization efficiency relies on the Fe(OH)4^- generated by dissolving sodium ferrite.展开更多
The influence of solution treatment on the microstructure and properties of Mg2Si/AZ91D composites fabricated from Mg-SiO2 system via in-situ processing method was investigated.The results show that coarse Chinese scr...The influence of solution treatment on the microstructure and properties of Mg2Si/AZ91D composites fabricated from Mg-SiO2 system via in-situ processing method was investigated.The results show that coarse Chinese script shape Mg2Si phases can be formed by adding SiO2 into AZ91D magnesium alloy with Si content up to 1.5% of the alloy melt.During solution treatment,the morphology and distribution of the coarse Chinese script shape Mg2Si phases are modified.Meanwhile,the β-Mg17Al12 phase is dissolved into the magnesium matrix.With increasing holding time,the coarse Mg2Si phases tend to dissolve,break and spheroidize.After solution treatment at 420 ℃ for 16 h,Mg2Si phases become the finest and relatively well-distributed phase.The tensile strength and elongation are increased by 14.9% and 38.9%,respectively.It is believed that the Mg2Si phases continuously dissolve and break,and finally the spheroidized Mg2Si particles are obtained due to the interface tension of Mg2Si/Mg interface.展开更多
The solubility of zinc oxide in sodium hydroxide solution was measured in a closed polytetrafluoroethylene vessel from 25 to 100 ℃. The ZnO solubility was determined by employing the method of isothermal solution sat...The solubility of zinc oxide in sodium hydroxide solution was measured in a closed polytetrafluoroethylene vessel from 25 to 100 ℃. The ZnO solubility was determined by employing the method of isothermal solution saturation. The results show that only ZnO solid exists in the equilibrium state in the low concentration alkali regions, and the solubility of zinc oxide is almost invariable with temperature. With the increase of alkali concentration, equilibrium solid turns from ZnO to NaZn(OH)3 suddenly, this mutation is called invariant point. The alkali concentration of the invariant points increases with increasing temperature, but the solubility of NaZn(OH)3 decreases with increasing alkali concentration at the same temperature. At the same Na2O concentration, the higher the temperature is, the higher the solubility of NaZn(OH)3 is.展开更多
Cu2O@Cu2O core-shell nanoparticles (NPs) were prepared by using solution phase strategy. It was found that Cu2O@Cu2O NPs were easily converted to Cu2O@Cu NPs with the help of polyvinylpyrrolidine (PVP) and excessive a...Cu2O@Cu2O core-shell nanoparticles (NPs) were prepared by using solution phase strategy. It was found that Cu2O@Cu2O NPs were easily converted to Cu2O@Cu NPs with the help of polyvinylpyrrolidine (PVP) and excessive ascorbic acid (AA) in air at room temperature, which was an interesting phenomenon. The features of the two kinds of NPs were characterized by XRD, TEM and extinction spectra. Cu2O@Cu NPs with different shell thicknesses showed wide tunable optical properties for the localized surface plasmon (LSP) in metallic Cu. But Cu2O@Cu2O NPs did not indicate this feature. FTIR results reveal that Cu+ ions on the surface of Cu2O shell coordinate with N and O atoms in PVP and are further reduced to metallic Cu by excessive AA and then form a nucleation site on the surface of Cu2O nanocrystalline. PVP binds onto different sites to proceed with the reduction utill all the Cu sources in Cu2O shell are completely assumed.展开更多
Nanosphere-like Li2FeSiO4/C was synthesized via a solution method using sucrose as carbon sources under a mild condition of time-saving and energy-saving, followed by sintering at high temperatures for crystallization...Nanosphere-like Li2FeSiO4/C was synthesized via a solution method using sucrose as carbon sources under a mild condition of time-saving and energy-saving, followed by sintering at high temperatures for crystallization. The amount of carbon in the composite is less than 10% (mass fraction), and the X-ray diffraction result confirms that the sample is of pure single phase indexed with the orthorhombic Pmn21 space group. The particle size of the Li2FeSiO4/C synthesized at 700 °C for 9 h is very fine and spherical-like with a size of 200 nm. The electrochemical performance of this material, including reversible capacity, cycle number, and charge-discharge characteristics, were tested. The cell of this sample can deliver a discharge capacity of 166 mA-h/g at C/20 rate in the first three cycles. After 30 cycles, the capacity decreases to 158 mA-h/g, and the capacity retention is up to 95%. The results show that this method can prepare nanosphere-like Li2FeSiO4/C composite with good electrochemical performance.展开更多
文摘Periodic solution of m order linear neutral equations with constant coefficient and time delays was studied. Existence and uniqueness of 2 T-periodic solutions for the equation were discussed by using the method of Fourier series. Some new necessary and sufficient conditions of existence and uniqueness of 2 T-periodic solutions for the equation are obtained. The main result is used widely. It contains results in some correlation paper for its special case, improves and extends the main results in them. Existence of periodic solution for the equation in larger number of particular case can be checked by using the result, but cannot be checked in another paper. In other words, the main result in this paper is most generalized for (1) the better result cannot be found by using the same method.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12275172 and 11905124)。
文摘This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional Hirota-Satsuma-Ito equation are obtained,which are all related to the seed solution of the equation.It is interesting that the rogue wave is aroused by the interaction between one-lump soliton and a pair of resonance stripe solitons,and the fusion and fission phenomena are also found in the interaction between lump solitons and one-stripe soliton.Furthermore,the breather wave solution is also obtained by reducing the two-soliton solutions.The trajectory and period of the one-order breather wave are analyzed.The corresponding dynamical characteristics are demonstrated by the graphs.
文摘For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.
基金financial supports from the National Key Research and Development Program of China(No.2022YFB3504501)the National Natural Science Foundation of China(Nos.52274355,91962211)the Gansu Province Science and Technology Major Special Project,China(No.22ZD6GD061)。
文摘For a highly efficient recycling of a wastewater containing a high concentration of MgCl_2,Al(Ⅲ)and P507 were scheduled to be removed in advance.In this study,the in-situ removal of Al(Ⅲ)and P507 from a high concentration MgCl_(2)solution at different pH values and Al/P molar ratios was investigated.The results showed that P507 formed organic complexes of Al_x(OH)_y~(Z+)-P507 at pH of 2.0-4.0.At pH of 4.0-5.0,Al(Ⅲ)precipitated and transferred into Al(OH)_(3)with a flocculent amorphous morphology.Active sites on the Al(OH)_(3)surface enhanced the removal efficiency of P507.At pH of 6.0-6.5,Al(Ⅲ)and Mg(Ⅱ)formed layered crystalline Al(OH)_(3)and MgAl_2(OH)_(8with)small pore channels and fewer active sites,resulting in a reduced removal efficiency of P507.When the Al/P molar ratio exceeded 13 and the pH was between 4.0 and 5.0,the removal rates of both Al(Ⅲ)and P507 were higher than98%,while the concentration loss of Mg(Ⅱ)was only 0.2%-0.9%.
基金National Natural Science Foundation of China,Grant/Award Numbers:21972108,U20A20249,U22A20438Changzhou Science and Technology Bureau,Grant/Award Number:CM20223017Innovation and Technology Commission(ITC)of Hong Kong,The Innovation&Technology Fund(ITF)with Project No.ITS/126/21。
文摘Iron‐based pyrophosphates are attractive cathodes for sodium‐ion batteries due to their large framework,cost‐effectiveness,and high energy density.However,the understanding of the crystal structure is scarce and only a limited candidates have been reported so far.In this work,we found for the first time that a continuous solid solution,Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2)(0≤α≤1,could be obtained by mutual substitution of cations at center‐symmetric Na3 and Na4 sites while keeping the crystal building blocks of anionic P_(2)O_(7) unchanged.In particular,a novel off‐stoichiometric Na_(3)Fe(2.5)(P_(2)O_(7))_(2)is thus proposed,and its structure,energy storage mechanism,and electrochemical performance are extensively investigated to unveil the structure–function relationship.The as‐prepared off‐stoichiometric electrode delivers appealing performance with a reversible discharge capacity of 83 mAh g^(−1),a working voltage of 2.9 V(vs.Na^(+)/Na),the retention of 89.2%of the initial capacity after 500 cycles,and enhanced rate capability of 51 mAh g^(−1)at a current density of 1600 mA g^(−1).This research shows that sodium ferric pyrophosphate could form extended solid solution composition and promising phase is concealed in the range of Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2),offering more chances for exploration of new cathode materials for the construction of high‐performance SIBs.
文摘This paper presents a study on CO<sub>2</sub> atmospheric transformation which was reacted directly with lithium hydroxide solution and metallic lithium. This solution was obtained through the reaction between metallic lithium and deionized water where hydrogen is produced and by exposing the metal at ambient conditions. In the transformation process, atmospheric CO<sub>2</sub> gas reacts directly with LiOH solution, in both cases, the CO<sub>2</sub> transformation kinetics was different. For this purpose, reactions between CO<sub>2</sub> and LiOH solution were carried out under controlled temperature and the second process only with metallic lithium, which was exposed at room temperature, however, in these two processes lithium carbonate oxide was formed and identified. According to the results, the efficiency in CO<sub>2</sub> transformation is a function of temperature value which was variable until completely obtaining the by-product, its XRD characterization indicated the formation only of Li<sub>2</sub>CO<sub>3</sub> in both procedures. Under laboratory conditions lithium compounds selectively reacted with CO<sub>2</sub>. In the same way, there is an alternative procedure to obtain LiOH and Li<sub>2</sub>CO<sub>3</sub> for different applications in various areas.
基金supported by the BIT Research and Innovation Promoting Project(2023YCXY046)the NSFC(11771468,11971027,11971061,12171497 and 12271028)+1 种基金the BNSF(1222017)the Fundamental Research Funds for the Central Universities。
文摘In this paper,we are concerned with solutions to the fractional Schrodinger-Poisson system■ with prescribed mass ∫_(R^(3))|u|^(2)dx=a^(2),where a> 0 is a prescribed number,μ> 0 is a paremeter,s ∈(0,1),2 <q <2_(s)^(*),and 2_(s)^(*)=6/(3-2s) is the fractional critical Sobolev exponent.In the L2-subcritical case,we show the existence of multiple normalized solutions by using the genus theory and the truncation technique;in the L^(2)-supercritical case,we obtain a couple of normalized solutions by developing a fiber map.Under both cases,to recover the loss of compactness of the energy functional caused by the doubly critical growth,we need to adopt the concentration-compactness principle.Our results complement and improve upon some existing studies on the fractional Schrodinger-Poisson system with a nonlocal critical term.
基金This work was supported by the National Natural Science Foundation of China(Grant No.11505090)Research Award Foundation for Outstanding Young Scientists of Shandong Province(Grant No.BS2015SF009)+2 种基金the Doctoral Foundation of Liaocheng University(Grant No.318051413)Liaocheng University Level Science and Technology Research Fund(Grant No.318012018)Discipline with Strong Characteristics of Liaocheng University–Intelligent Science and Technology(Grant No.319462208).
文摘This article investigates the Hirota-Satsuma-Ito equation with variable coefficient using the Hirota bilinear method and the long wave limit method.The equation is proved to be Painlevé integrable by Painlevé analysis.On the basis of the bilinear form,the forms of two-soliton solutions,three-soliton solutions,and four-soliton solutions are studied specifically.The appropriate parameter values are chosen and the corresponding figures are presented.The breather waves solutions,lump solutions,periodic solutions and the interaction of breather waves solutions and soliton solutions,etc.are given.In addition,we also analyze the different effects of the parameters on the figures.The figures of the same set of parameters in different planes are presented to describe the dynamical behavior of solutions.These are important for describing water waves in nature.
文摘In this study, we will introduce the modified (G'/G<sup>2</sup>)-expansion method to explore some of the exact traveling wave solutions of some nonlinear partial differential equations namely, Phi-4 equation, Joseph-Egri (TRLW) equation, and Calogro-Degasperis (CD) equation. As a result, we have obtained solutions for the equations expressed in terms of trigonometric, hyperbolic and rational functions. Moreover, some selected solutions are plotted using some specific values for the parameters.
基金Project (50974138) supported by the National Natural Science Foundation of ChinaProject (2010ssxt158) supported by Graduate Student Innovation Foundation of Central South University,China
文摘The selective recovery of lead from the zinc oxide dust using an alkaline Na2EDTA solution was investigated. The effects of temperature, leaching time, Na2EDTA concentration and initial NaOH concentration on the leaching rates of lead and zinc were studied. The following optimized leaching conditions were obtained: liquid-to-solid ratio 5:1 mL/g, stirring speed 650 r/min, Na2EDTA concentration 0.12 mol/L, initial NaOH concentration 0.5 mol/L, leaching temperature 70 ℃, leaching time 120 min. Under the optimized conditions, the average leaching rates of lead, zinc, fluoride and chloride are 89.92%, 0.94%, 62.84% and 90.02%, respectively. The filtrate was used to electrowin lead powders. The average current efficiency of electrowinning is about 93% and lead content is higher than 98% under the conditions of temperature of 60 ℃, current density of 200 A/m2, H3PO4 concentration of 1.5 g/L, and lead ion concentration of above 5 g/L. The consumption of Na2EDTA and the direct current are about respectively 0.218 kg and 0.958 kW·h for per kilogram of lead powder.
基金Project(51374239)supported by the National Natural Science Foundation of China
文摘The synthesis of sodium ferrite and its desulfurization performance in S2 -bearing sodium aluminate solutions were investigated. The thermodynamic analysis shows that the lowest temperature is about 810 K for synthesizing sodium ferrite by roasting the mixture of ferric oxide and sodium carbonate. The results indicate that the formation process of sodium ferrite can be completed at 1173 K for 60 min, meanwhile raising temperature and reducing NazCO3 particle size are beneficial to accelerating the formation of sodium ferrite. Sodium ferrite is an efficient desulfurizer to remove the S2- in aluminate solution, and the desulfurization rate can reach approximately 70% at 373 K for 60 min with the molar ratio of iron to sulfur of 1:1-1.5:1. Furthermore, the desulfurization is achieved by NaFeS2·2H2O precipitation through the reaction of Fe(OH)4 and S^2- in aluminate solution, and the desulfurization efficiency relies on the Fe(OH)4^- generated by dissolving sodium ferrite.
基金Project (BG2007030) supported by High-tech Research Program of Jiangsu Province, ChinaProject (07KJA43008) supported by the Natural Science Foundation of Jiangsu Province, ChinaProject (20070299004) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘The influence of solution treatment on the microstructure and properties of Mg2Si/AZ91D composites fabricated from Mg-SiO2 system via in-situ processing method was investigated.The results show that coarse Chinese script shape Mg2Si phases can be formed by adding SiO2 into AZ91D magnesium alloy with Si content up to 1.5% of the alloy melt.During solution treatment,the morphology and distribution of the coarse Chinese script shape Mg2Si phases are modified.Meanwhile,the β-Mg17Al12 phase is dissolved into the magnesium matrix.With increasing holding time,the coarse Mg2Si phases tend to dissolve,break and spheroidize.After solution treatment at 420 ℃ for 16 h,Mg2Si phases become the finest and relatively well-distributed phase.The tensile strength and elongation are increased by 14.9% and 38.9%,respectively.It is believed that the Mg2Si phases continuously dissolve and break,and finally the spheroidized Mg2Si particles are obtained due to the interface tension of Mg2Si/Mg interface.
基金Project (2007CB613603) supported by the National Basic Research Program of China
文摘The solubility of zinc oxide in sodium hydroxide solution was measured in a closed polytetrafluoroethylene vessel from 25 to 100 ℃. The ZnO solubility was determined by employing the method of isothermal solution saturation. The results show that only ZnO solid exists in the equilibrium state in the low concentration alkali regions, and the solubility of zinc oxide is almost invariable with temperature. With the increase of alkali concentration, equilibrium solid turns from ZnO to NaZn(OH)3 suddenly, this mutation is called invariant point. The alkali concentration of the invariant points increases with increasing temperature, but the solubility of NaZn(OH)3 decreases with increasing alkali concentration at the same temperature. At the same Na2O concentration, the higher the temperature is, the higher the solubility of NaZn(OH)3 is.
基金Projects(41172110,61107090)supported by the National Natural Science Foundation of China
文摘Cu2O@Cu2O core-shell nanoparticles (NPs) were prepared by using solution phase strategy. It was found that Cu2O@Cu2O NPs were easily converted to Cu2O@Cu NPs with the help of polyvinylpyrrolidine (PVP) and excessive ascorbic acid (AA) in air at room temperature, which was an interesting phenomenon. The features of the two kinds of NPs were characterized by XRD, TEM and extinction spectra. Cu2O@Cu NPs with different shell thicknesses showed wide tunable optical properties for the localized surface plasmon (LSP) in metallic Cu. But Cu2O@Cu2O NPs did not indicate this feature. FTIR results reveal that Cu+ ions on the surface of Cu2O shell coordinate with N and O atoms in PVP and are further reduced to metallic Cu by excessive AA and then form a nucleation site on the surface of Cu2O nanocrystalline. PVP binds onto different sites to proceed with the reduction utill all the Cu sources in Cu2O shell are completely assumed.
基金Project supported by Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, China Project (2010JK765) supported by the Education Department of Shaanxi Province, China
文摘Nanosphere-like Li2FeSiO4/C was synthesized via a solution method using sucrose as carbon sources under a mild condition of time-saving and energy-saving, followed by sintering at high temperatures for crystallization. The amount of carbon in the composite is less than 10% (mass fraction), and the X-ray diffraction result confirms that the sample is of pure single phase indexed with the orthorhombic Pmn21 space group. The particle size of the Li2FeSiO4/C synthesized at 700 °C for 9 h is very fine and spherical-like with a size of 200 nm. The electrochemical performance of this material, including reversible capacity, cycle number, and charge-discharge characteristics, were tested. The cell of this sample can deliver a discharge capacity of 166 mA-h/g at C/20 rate in the first three cycles. After 30 cycles, the capacity decreases to 158 mA-h/g, and the capacity retention is up to 95%. The results show that this method can prepare nanosphere-like Li2FeSiO4/C composite with good electrochemical performance.