In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubi...In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation.展开更多
In this study, the coupled heave-pitch motion equations of a spar platform were established by considering lst-order and 2nd-order random wave loads and the effects of time-varying displacement volume and transient wa...In this study, the coupled heave-pitch motion equations of a spar platform were established by considering lst-order and 2nd-order random wave loads and the effects of time-varying displacement volume and transient wave elevation. We generated random wave loads based on frequency-domain wave load transfer functions and the Joint North Sea Wave Project (JONSWAP) wave spectrum, designed program codes to solve the motion equations, and then simulated the coupled heave-pitch motion responses of the platform in the time domain. We then calculated and compared the motion responses in different sea conditions and separately investigated the effects of 2nd-order random wave loads and transient wave elevation. The results show that the coupled heave-pitch motion responses of the platform are primarily dominated by wave height and the characteristic wave period, the latter of which has a greater impact. 2nd-order mean wave loads mainly affect the average heave value. The platform's pitch increases after the 2nd-order low frequency wave loads are taken into account. The platform's heave is underestimated if the transient wave elevation term in the motion equations is neglected.展开更多
Distributed fiber sensors based on forward stimulated Brillouin scattering(F-SBS)have attracted special attention because of their capability to detect the acoustic impedance of liquid material outside fiber.However,t...Distributed fiber sensors based on forward stimulated Brillouin scattering(F-SBS)have attracted special attention because of their capability to detect the acoustic impedance of liquid material outside fiber.However,the reported results were based on the extraction of a 1st-order local spectrum,causing the sensing distance to be restricted by pump depletion.Here,a novel post-processing technique was proposed for distributed acoustic impedance sensing by extracting the 2nd-order local spectrum,which is beneficial for improving the sensing signal-to-noise ratio(SNR)significantly,since its pulse energy penetrates into the fiber more deeply.As a proof-of-concept,distributed acoustic impedance sensing along~1630 m fiber under moderate spatial resolution of~20 m was demonstrated.展开更多
By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ordinary differential equation method is presented for solving the (2 + 1)-dimensional sine-Poisson equa...By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ordinary differential equation method is presented for solving the (2 + 1)-dimensional sine-Poisson equation. As a result, many explicit and exact solutions of the (2 + 1)-dimensional sine-Poisson equation are derived in a simple manner by this technique.展开更多
A 2nd-order spline wavelet convolution method in resolving overlapped peaks is developed. It determines the number of peaks, peak positions and width through wavelet? convolution, then uses spline function to construc...A 2nd-order spline wavelet convolution method in resolving overlapped peaks is developed. It determines the number of peaks, peak positions and width through wavelet? convolution, then uses spline function to construct the resoluter, which is used to resolve overlapped peaks. Theoretical proof is given, and the selections of wavelets and parameters are discussed. It is proven that baseline separation can be achieved after processed, the relative errors of peak position and area are less than 0.2% and 4.0% respectively. It can be directly applied to seriously overlapped signals, noisy signals and multi-component signals, and the results are satisfactory. It is a novel effective method for resolution.展开更多
We report the single-to-multiple channel wavelength conversions of 1.57-ps pulses based on cascaded secondharmonic generation and difference frequency generation in quasi-phase-matched periodically poled lithium hieba...We report the single-to-multiple channel wavelength conversions of 1.57-ps pulses based on cascaded secondharmonic generation and difference frequency generation in quasi-phase-matched periodically poled lithium hiebate waveguides. For single-to-single channel wavelength conversion, no external cavity laser is required with use of a fibre ring laser. The conversion efficiency is about -21.44 dB. The converted idler wavelength can be tuned from 1526.4nm to 1537.5nm as the lasing pump wavelength is varied from 1566.1 nm to 1555.0nm. By employing several input pumps, tunable single-to-dual and single-to-triple channel wavelength conversions are experimentally demonstrated.展开更多
The (180)<sup>3</sup> third-order mixed sensitivities of the leakage response of a polyethylene-reflected plutonium (PERP) experimental benchmark with respect to the benchmark’s 180 microscopic total cros...The (180)<sup>3</sup> third-order mixed sensitivities of the leakage response of a polyethylene-reflected plutonium (PERP) experimental benchmark with respect to the benchmark’s 180 microscopic total cross sections have been computed in accompanying works [1] [2]. This work quantifies the contributions of these (180)<sup>3</sup> third-order mixed sensitivities to the PERP benchmark’s leakage response distribution moments (expected value, variance and skewness) and compares these contributions to those stemming from the corresponding first- and second-order sensitivities of the PERP benchmark’s leakage response with respect to the total cross sections. The numerical results obtained in this work reveal that the importance of the 3<sup>rd</sup>-order sensitivities can surpass the importance of the 1<sup>st</sup>- and 2<sup>nd</sup>-order sensitivities when the parameters’ uncertainties increase. In particular, for a uniform standard deviation of 10% of the microscopic total cross sections, the 3<sup>rd</sup>-order sensitivities contribute 80% to the response variance, whereas the contribution stemming from the 1st- and 2nd-order sensitivities amount only to 2% and 18%, respectively. Consequently, neglecting the 3<sup>rd</sup>-order sensitivities could cause a very large non-conservative error by under-reporting the response variance by a factor of 506%. The results obtained in this work also indicate that the effects of the 3<sup>rd</sup>-order sensitivities are to reduce the response’s skewness in parameter space, rendering the distribution of the leakage response more symmetric about its expected value. The results obtained in this work are the first such results ever published in reactor physics. Since correlations among the group-averaged microscopic total cross sections are not available, only the effects of typical standard deviations for these cross sections could be considered. Due to this lack of correlations among the cross sections, the effects of the <em>mixed</em> 3<sup>rd</sup>-order sensitivities could not be quantified exactly at this time. These effects could be quantified only when correlations among the group-averaged microscopic total cross sections would be obtained experimentally by the nuclear physics community.展开更多
This work presents the mathematical framework of the “Fifth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems (5<sup>th</sup>-CASAM-N),” which generalizes and extends all...This work presents the mathematical framework of the “Fifth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems (5<sup>th</sup>-CASAM-N),” which generalizes and extends all of the previous works performed to date on this subject. The 5<sup>th</sup>-CASAM-N enables the exact and efficient computation of all sensitivities, up to and including fifth-order, of model responses to uncertain model parameters and uncertain boundaries of the system’s domain of definition, thus enabling, inter alia, the quantification of uncertainties stemming from manufacturing tolerances. The 5<sup>th</sup>-CASAM-N provides a fundamental step towards overcoming the curse of dimensionality in sensitivity and uncertainty analysis.展开更多
文摘In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation.
基金Foundation item: Supported by the National Natural Science Foundation of China under Grant No. 51279130 and No. 51239008
文摘In this study, the coupled heave-pitch motion equations of a spar platform were established by considering lst-order and 2nd-order random wave loads and the effects of time-varying displacement volume and transient wave elevation. We generated random wave loads based on frequency-domain wave load transfer functions and the Joint North Sea Wave Project (JONSWAP) wave spectrum, designed program codes to solve the motion equations, and then simulated the coupled heave-pitch motion responses of the platform in the time domain. We then calculated and compared the motion responses in different sea conditions and separately investigated the effects of 2nd-order random wave loads and transient wave elevation. The results show that the coupled heave-pitch motion responses of the platform are primarily dominated by wave height and the characteristic wave period, the latter of which has a greater impact. 2nd-order mean wave loads mainly affect the average heave value. The platform's pitch increases after the 2nd-order low frequency wave loads are taken into account. The platform's heave is underestimated if the transient wave elevation term in the motion equations is neglected.
基金Project supported by the Sichuan Science and Technology Program(Grant No.2019YJ0530)Scientific Research Fund of Sichuan Provincial Education Department,China(Grant No.18ZA0401)the National Natural Science Foundation of China(Grant No.61205079).
文摘Distributed fiber sensors based on forward stimulated Brillouin scattering(F-SBS)have attracted special attention because of their capability to detect the acoustic impedance of liquid material outside fiber.However,the reported results were based on the extraction of a 1st-order local spectrum,causing the sensing distance to be restricted by pump depletion.Here,a novel post-processing technique was proposed for distributed acoustic impedance sensing by extracting the 2nd-order local spectrum,which is beneficial for improving the sensing signal-to-noise ratio(SNR)significantly,since its pulse energy penetrates into the fiber more deeply.As a proof-of-concept,distributed acoustic impedance sensing along~1630 m fiber under moderate spatial resolution of~20 m was demonstrated.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10672053)
文摘By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ordinary differential equation method is presented for solving the (2 + 1)-dimensional sine-Poisson equation. As a result, many explicit and exact solutions of the (2 + 1)-dimensional sine-Poisson equation are derived in a simple manner by this technique.
基金This work was supported by the National Natural Science Foundation of China(Grant No.29975033)the Natural Science Foundation of Guangdong Province(Grant Nos.980340 and 001237).
文摘A 2nd-order spline wavelet convolution method in resolving overlapped peaks is developed. It determines the number of peaks, peak positions and width through wavelet? convolution, then uses spline function to construct the resoluter, which is used to resolve overlapped peaks. Theoretical proof is given, and the selections of wavelets and parameters are discussed. It is proven that baseline separation can be achieved after processed, the relative errors of peak position and area are less than 0.2% and 4.0% respectively. It can be directly applied to seriously overlapped signals, noisy signals and multi-component signals, and the results are satisfactory. It is a novel effective method for resolution.
基金Supported by the National Natural Science Foundation of China under Grant No 60577006.
文摘We report the single-to-multiple channel wavelength conversions of 1.57-ps pulses based on cascaded secondharmonic generation and difference frequency generation in quasi-phase-matched periodically poled lithium hiebate waveguides. For single-to-single channel wavelength conversion, no external cavity laser is required with use of a fibre ring laser. The conversion efficiency is about -21.44 dB. The converted idler wavelength can be tuned from 1526.4nm to 1537.5nm as the lasing pump wavelength is varied from 1566.1 nm to 1555.0nm. By employing several input pumps, tunable single-to-dual and single-to-triple channel wavelength conversions are experimentally demonstrated.
文摘The (180)<sup>3</sup> third-order mixed sensitivities of the leakage response of a polyethylene-reflected plutonium (PERP) experimental benchmark with respect to the benchmark’s 180 microscopic total cross sections have been computed in accompanying works [1] [2]. This work quantifies the contributions of these (180)<sup>3</sup> third-order mixed sensitivities to the PERP benchmark’s leakage response distribution moments (expected value, variance and skewness) and compares these contributions to those stemming from the corresponding first- and second-order sensitivities of the PERP benchmark’s leakage response with respect to the total cross sections. The numerical results obtained in this work reveal that the importance of the 3<sup>rd</sup>-order sensitivities can surpass the importance of the 1<sup>st</sup>- and 2<sup>nd</sup>-order sensitivities when the parameters’ uncertainties increase. In particular, for a uniform standard deviation of 10% of the microscopic total cross sections, the 3<sup>rd</sup>-order sensitivities contribute 80% to the response variance, whereas the contribution stemming from the 1st- and 2nd-order sensitivities amount only to 2% and 18%, respectively. Consequently, neglecting the 3<sup>rd</sup>-order sensitivities could cause a very large non-conservative error by under-reporting the response variance by a factor of 506%. The results obtained in this work also indicate that the effects of the 3<sup>rd</sup>-order sensitivities are to reduce the response’s skewness in parameter space, rendering the distribution of the leakage response more symmetric about its expected value. The results obtained in this work are the first such results ever published in reactor physics. Since correlations among the group-averaged microscopic total cross sections are not available, only the effects of typical standard deviations for these cross sections could be considered. Due to this lack of correlations among the cross sections, the effects of the <em>mixed</em> 3<sup>rd</sup>-order sensitivities could not be quantified exactly at this time. These effects could be quantified only when correlations among the group-averaged microscopic total cross sections would be obtained experimentally by the nuclear physics community.
文摘This work presents the mathematical framework of the “Fifth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems (5<sup>th</sup>-CASAM-N),” which generalizes and extends all of the previous works performed to date on this subject. The 5<sup>th</sup>-CASAM-N enables the exact and efficient computation of all sensitivities, up to and including fifth-order, of model responses to uncertain model parameters and uncertain boundaries of the system’s domain of definition, thus enabling, inter alia, the quantification of uncertainties stemming from manufacturing tolerances. The 5<sup>th</sup>-CASAM-N provides a fundamental step towards overcoming the curse of dimensionality in sensitivity and uncertainty analysis.