期刊文献+
共找到123篇文章
< 1 2 7 >
每页显示 20 50 100
Rail-Pillar Net:A 3D Detection Network for Railway Foreign Object Based on LiDAR
1
作者 Fan Li Shuyao Zhang +2 位作者 Jie Yang Zhicheng Feng Zhichao Chen 《Computers, Materials & Continua》 SCIE EI 2024年第9期3819-3833,共15页
Aiming at the limitations of the existing railway foreign object detection methods based on two-dimensional(2D)images,such as short detection distance,strong influence of environment and lack of distance information,w... Aiming at the limitations of the existing railway foreign object detection methods based on two-dimensional(2D)images,such as short detection distance,strong influence of environment and lack of distance information,we propose Rail-PillarNet,a three-dimensional(3D)LIDAR(Light Detection and Ranging)railway foreign object detection method based on the improvement of PointPillars.Firstly,the parallel attention pillar encoder(PAPE)is designed to fully extract the features of the pillars and alleviate the problem of local fine-grained information loss in PointPillars pillars encoder.Secondly,a fine backbone network is designed to improve the feature extraction capability of the network by combining the coding characteristics of LIDAR point cloud feature and residual structure.Finally,the initial weight parameters of the model were optimised by the transfer learning training method to further improve accuracy.The experimental results on the OSDaR23 dataset show that the average accuracy of Rail-PillarNet reaches 58.51%,which is higher than most mainstream models,and the number of parameters is 5.49 M.Compared with PointPillars,the accuracy of each target is improved by 10.94%,3.53%,16.96%and 19.90%,respectively,and the number of parameters only increases by 0.64M,which achieves a balance between the number of parameters and accuracy. 展开更多
关键词 Railway foreign object light detection and ranging(LidAR) 3d object detection PointPillars parallel attention mechanism transfer learning
下载PDF
Depth-Guided Vision Transformer With Normalizing Flows for Monocular 3D Object Detection
2
作者 Cong Pan Junran Peng Zhaoxiang Zhang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期673-689,共17页
Monocular 3D object detection is challenging due to the lack of accurate depth information.Some methods estimate the pixel-wise depth maps from off-the-shelf depth estimators and then use them as an additional input t... Monocular 3D object detection is challenging due to the lack of accurate depth information.Some methods estimate the pixel-wise depth maps from off-the-shelf depth estimators and then use them as an additional input to augment the RGB images.Depth-based methods attempt to convert estimated depth maps to pseudo-LiDAR and then use LiDAR-based object detectors or focus on the perspective of image and depth fusion learning.However,they demonstrate limited performance and efficiency as a result of depth inaccuracy and complex fusion mode with convolutions.Different from these approaches,our proposed depth-guided vision transformer with a normalizing flows(NF-DVT)network uses normalizing flows to build priors in depth maps to achieve more accurate depth information.Then we develop a novel Swin-Transformer-based backbone with a fusion module to process RGB image patches and depth map patches with two separate branches and fuse them using cross-attention to exchange information with each other.Furthermore,with the help of pixel-wise relative depth values in depth maps,we develop new relative position embeddings in the cross-attention mechanism to capture more accurate sequence ordering of input tokens.Our method is the first Swin-Transformer-based backbone architecture for monocular 3D object detection.The experimental results on the KITTI and the challenging Waymo Open datasets show the effectiveness of our proposed method and superior performance over previous counterparts. 展开更多
关键词 Monocular 3d object detection normalizing flows Swin Transformer
下载PDF
Algorithm and System of Scanning Color 3D Objects 被引量:1
3
作者 许智钦 孙长库 郑义忠 《Transactions of Tianjin University》 EI CAS 2002年第2期134-138,共5页
This paper presents a complete system for scanning the geometry and texture of a large 3D object, then the automatic registration is performed to obtain a whole realistic 3D model. This system is composed of one line ... This paper presents a complete system for scanning the geometry and texture of a large 3D object, then the automatic registration is performed to obtain a whole realistic 3D model. This system is composed of one line strip laser and one color CCD camera. The scanned object is pictured twice by a color CCD camera. First, the texture of the scanned object is taken by a color CCD camera. Then the 3D information of the scanned object is obtained from laser plane equations. This paper presents a practical way to implement the three dimensional measuring method and the automatic registration of a large 3D object and a pretty good result is obtained after experiment verification. 展开更多
关键词 d measurement color 3d object laser scanning surface construction
下载PDF
General and robust voxel feature learning with Transformer for 3D object detection 被引量:1
4
作者 LI Yang GE Hongwei 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第1期51-60,共10页
The self-attention networks and Transformer have dominated machine translation and natural language processing fields,and shown great potential in image vision tasks such as image classification and object detection.I... The self-attention networks and Transformer have dominated machine translation and natural language processing fields,and shown great potential in image vision tasks such as image classification and object detection.Inspired by the great progress of Transformer,we propose a novel general and robust voxel feature encoder for 3D object detection based on the traditional Transformer.We first investigate the permutation invariance of sequence data of the self-attention and apply it to point cloud processing.Then we construct a voxel feature layer based on the self-attention to adaptively learn local and robust context of a voxel according to the spatial relationship and context information exchanging between all points within the voxel.Lastly,we construct a general voxel feature learning framework with the voxel feature layer as the core for 3D object detection.The voxel feature with Transformer(VFT)can be plugged into any other voxel-based 3D object detection framework easily,and serves as the backbone for voxel feature extractor.Experiments results on the KITTI dataset demonstrate that our method achieves the state-of-the-art performance on 3D object detection. 展开更多
关键词 3d object detection self-attention networks voxel feature with Transformer(VFT) point cloud encoder-decoder
下载PDF
Exploring Local Regularities for 3D Object Recognition
5
作者 TIAN Huaiwen QIN Shengfeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第6期1104-1113,共10页
In order to find better simplicity measurements for 3D object recognition, a new set of local regularities is developed and tested in a stepwise 3D reconstruction method, including localized minimizing standard deviat... In order to find better simplicity measurements for 3D object recognition, a new set of local regularities is developed and tested in a stepwise 3D reconstruction method, including localized minimizing standard deviation of angles(L-MSDA), localized minimizing standard deviation of segment magnitudes(L-MSDSM), localized minimum standard deviation of areas of child faces (L-MSDAF), localized minimum sum of segment magnitudes of common edges (L-MSSM), and localized minimum sum of areas of child face (L-MSAF). Based on their effectiveness measurements in terms of form and size distortions, it is found that when two local regularities: L-MSDA and L-MSDSM are combined together, they can produce better performance. In addition, the best weightings for them to work together are identified as 10% for L-MSDSM and 90% for L-MSDA. The test results show that the combined usage of L-MSDA and L-MSDSM with identified weightings has a potential to be applied in other optimization based 3D recognition methods to improve their efficacy and robustness. 展开更多
关键词 stepwise 3d reconstruction localized regularities 3d object recognition polyhedral objects line drawing
下载PDF
MFF-Net: Multimodal Feature Fusion Network for 3D Object Detection
6
作者 Peicheng Shi Zhiqiang Liu +1 位作者 Heng Qi Aixi Yang 《Computers, Materials & Continua》 SCIE EI 2023年第6期5615-5637,共23页
In complex traffic environment scenarios,it is very important for autonomous vehicles to accurately perceive the dynamic information of other vehicles around the vehicle in advance.The accuracy of 3D object detection ... In complex traffic environment scenarios,it is very important for autonomous vehicles to accurately perceive the dynamic information of other vehicles around the vehicle in advance.The accuracy of 3D object detection will be affected by problems such as illumination changes,object occlusion,and object detection distance.To this purpose,we face these challenges by proposing a multimodal feature fusion network for 3D object detection(MFF-Net).In this research,this paper first uses the spatial transformation projection algorithm to map the image features into the feature space,so that the image features are in the same spatial dimension when fused with the point cloud features.Then,feature channel weighting is performed using an adaptive expression augmentation fusion network to enhance important network features,suppress useless features,and increase the directionality of the network to features.Finally,this paper increases the probability of false detection and missed detection in the non-maximum suppression algo-rithm by increasing the one-dimensional threshold.So far,this paper has constructed a complete 3D target detection network based on multimodal feature fusion.The experimental results show that the proposed achieves an average accuracy of 82.60%on the Karlsruhe Institute of Technology and Toyota Technological Institute(KITTI)dataset,outperforming previous state-of-the-art multimodal fusion networks.In Easy,Moderate,and hard evaluation indicators,the accuracy rate of this paper reaches 90.96%,81.46%,and 75.39%.This shows that the MFF-Net network has good performance in 3D object detection. 展开更多
关键词 3d object detection multimodal fusion neural network autonomous driving attention mechanism
下载PDF
Monocular 3D object detection with Pseudo-LiDAR confidence sampling and hierarchical geometric feature extraction in 6G network
7
作者 Jianlong Zhang Guangzu Fang +3 位作者 Bin Wang Xiaobo Zhou Qingqi Pei Chen Chen 《Digital Communications and Networks》 SCIE CSCD 2023年第4期827-835,共9页
The high bandwidth and low latency of 6G network technology enable the successful application of monocular 3D object detection on vehicle platforms.Monocular 3D-object-detection-based Pseudo-LiDAR is a low-cost,lowpow... The high bandwidth and low latency of 6G network technology enable the successful application of monocular 3D object detection on vehicle platforms.Monocular 3D-object-detection-based Pseudo-LiDAR is a low-cost,lowpower solution compared to LiDAR solutions in the field of autonomous driving.However,this technique has some problems,i.e.,(1)the poor quality of generated Pseudo-LiDAR point clouds resulting from the nonlinear error distribution of monocular depth estimation and(2)the weak representation capability of point cloud features due to the neglected global geometric structure features of point clouds existing in LiDAR-based 3D detection networks.Therefore,we proposed a Pseudo-LiDAR confidence sampling strategy and a hierarchical geometric feature extraction module for monocular 3D object detection.We first designed a point cloud confidence sampling strategy based on a 3D Gaussian distribution to assign small confidence to the points with great error in depth estimation and filter them out according to the confidence.Then,we present a hierarchical geometric feature extraction module by aggregating the local neighborhood features and a dual transformer to capture the global geometric features in the point cloud.Finally,our detection framework is based on Point-Voxel-RCNN(PV-RCNN)with high-quality Pseudo-LiDAR and enriched geometric features as input.From the experimental results,our method achieves satisfactory results in monocular 3D object detection. 展开更多
关键词 Monocular 3d object detection Pseudo-LidAR Confidence sampling Hierarchical geometric feature extraction
下载PDF
3D Object Detection with Attention:Shell-Based Modeling
8
作者 Xiaorui Zhang Ziquan Zhao +1 位作者 Wei Sun Qi Cui 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期537-550,共14页
LIDAR point cloud-based 3D object detection aims to sense the surrounding environment by anchoring objects with the Bounding Box(BBox).However,under the three-dimensional space of autonomous driving scenes,the previou... LIDAR point cloud-based 3D object detection aims to sense the surrounding environment by anchoring objects with the Bounding Box(BBox).However,under the three-dimensional space of autonomous driving scenes,the previous object detection methods,due to the pre-processing of the original LIDAR point cloud into voxels or pillars,lose the coordinate information of the original point cloud,slow detection speed,and gain inaccurate bounding box positioning.To address the issues above,this study proposes a new two-stage network structure to extract point cloud features directly by PointNet++,which effectively preserves the original point cloud coordinate information.To improve the detection accuracy,a shell-based modeling method is proposed.It roughly determines which spherical shell the coordinates belong to.Then,the results are refined to ground truth,thereby narrowing the localization range and improving the detection accuracy.To improve the recall of 3D object detection with bounding boxes,this paper designs a self-attention module for 3D object detection with a skip connection structure.Some of these features are highlighted by weighting them on the feature dimensions.After training,it makes the feature weights that are favorable for object detection get larger.Thus,the extracted features are more adapted to the object detection task.Extensive comparison experiments and ablation experiments conducted on the KITTI dataset verify the effectiveness of our proposed method in improving recall and precision. 展开更多
关键词 3d object detection autonomous driving point cloud shell-based modeling self-attention mechanism
下载PDF
THREE-IMAGE MATCHING FOR 3-D LINEAR OBJECT TRACKING
9
作者 SHAO Juliang Clive Fraser 《Geo-Spatial Information Science》 2000年第2期13-18,40,共7页
This paper will discuss strategies for trinocular image rectification and matching for linear object tracking.It is well known that a pair of stereo images generates two epipolar images.Three overlapped images can yie... This paper will discuss strategies for trinocular image rectification and matching for linear object tracking.It is well known that a pair of stereo images generates two epipolar images.Three overlapped images can yield six epipolar images in situations where any two are required to be rectified for the purpose of image matching.In this case,the search for feature correspondences is computationally intensive and matching complexity increases.A special epipolar image rectification for three stereo images,which simplifies the image matching process,is therefore proposed.This method generates only three rectified images,with the result that the search for matching features becomes more straightforward.With the three rectified images,a particular line_segment_based correspondence strategy is suggested.The primary characteristics of the feature correspondence strategy include application of specific epipolar geometric constraints and reference to three_ray triangulation residuals in object space. 展开更多
关键词 three-image MATCHING 3-d LINEAR object TRACKING
下载PDF
基于对象全景技术的病理大体标本数字化3D标本制作研究 被引量:9
10
作者 冉华全 江竣 曾照芳 《激光杂志》 CAS CSCD 北大核心 2013年第3期97-98,共2页
分析医学病理大体标本的应用现状和存在的问题,研究用对象全景技术构建病理大体标本数字化3D模型。用高清相机360度拍摄处理后的病理大体标本图像,然后运用软件技术进行处理,实现标本的数字化3D互动展示。所构建的数字化病理标本比照片... 分析医学病理大体标本的应用现状和存在的问题,研究用对象全景技术构建病理大体标本数字化3D模型。用高清相机360度拍摄处理后的病理大体标本图像,然后运用软件技术进行处理,实现标本的数字化3D互动展示。所构建的数字化病理标本比照片或三维建模进行数字化的效果好,更适合临床应用并支持网络在线浏览。 展开更多
关键词 全景技术 病理标本 数字化3d
下载PDF
用面向对象的方法实现3DS文件的读取与操纵 被引量:9
11
作者 王益群 黄诚 《盐城工学院学报(自然科学版)》 CAS 2005年第3期41-44,共4页
介绍了利用面向对象的程序设计方法实现了3DS文件的读取。与面向过程的方法比较,面向对象方法对于理解3DS文件的读取、重绘及控制显得条理清晰,易于掌握,同时又方便移植到其它应用程序中。基于这一点,提出了将3DS文件的读取工作封装在... 介绍了利用面向对象的程序设计方法实现了3DS文件的读取。与面向过程的方法比较,面向对象方法对于理解3DS文件的读取、重绘及控制显得条理清晰,易于掌握,同时又方便移植到其它应用程序中。基于这一点,提出了将3DS文件的读取工作封装在一个类中,从而提高了程序的可读性。 展开更多
关键词 面向对象 OPENGL 3dMAX 法向量 面向对象方法 3dS 读取 文件 程序设计方法 操纵
下载PDF
用VBA在CAD平台上实现三维物体360°动态编辑显示
12
作者 胡卫 张永林 《微型电脑应用》 2002年第2期62-64,共3页
三维动态编辑显示在实际生活中有着广泛的应用前景 ,本文介绍了如何在 CAD平台上用 VBA实现三维物体 36 0°动态编辑显示 ,且详细讲述了整个系统及其各个部分的实现。
关键词 VBA CAd 三维物体360°动态编辑显示 程序设计
下载PDF
基于邻域扩展的半自动2D转3D方法
13
作者 高广银 袁红星 +1 位作者 朱长水 袁宝华 《计算机应用研究》 CSCD 北大核心 2016年第12期3916-3919,共4页
半自动2D转3D是解决当前3D影视内容匮乏的重要途径。现有方法大多借助局部邻域进行深度插值,忽略了图像的全局约束关系,因而难以准确恢复深度图的对象边界。针对该问题,提出邻域扩展的最优化深度插值方法。首先引入邻域的邻域,建立邻域... 半自动2D转3D是解决当前3D影视内容匮乏的重要途径。现有方法大多借助局部邻域进行深度插值,忽略了图像的全局约束关系,因而难以准确恢复深度图的对象边界。针对该问题,提出邻域扩展的最优化深度插值方法。首先引入邻域的邻域,建立邻域扩展的最优化深度插值能量模型;其次在相似的像素点与其邻域加权深度平均值的差异近似相等的假设条件下,将深度插值能量模型的最优化问题转换成一个稀疏线性方程组的求解问题。实验结果表明,与当前流行的半自动2D转3D方法相比,该方法估计的深度图PSNR更高,同时增强了深度图的对象边界质量。 展开更多
关键词 2d3d 最优化 深度插值 邻域扩展 对象边界
下载PDF
3D Instance Segmentation Using Deep Learning on RGB-D Indoor Data
14
作者 Siddiqui Muhammad Yasir Amin Muhammad Sadiq Hyunsik Ahn 《Computers, Materials & Continua》 SCIE EI 2022年第9期5777-5791,共15页
3D object recognition is a challenging task for intelligent and robot systems in industrial and home indoor environments.It is critical for such systems to recognize and segment the 3D object instances that they encou... 3D object recognition is a challenging task for intelligent and robot systems in industrial and home indoor environments.It is critical for such systems to recognize and segment the 3D object instances that they encounter on a frequent basis.The computer vision,graphics,and machine learning fields have all given it a lot of attention.Traditionally,3D segmentation was done with hand-crafted features and designed approaches that didn’t achieve acceptable performance and couldn’t be generalized to large-scale data.Deep learning approaches have lately become the preferred method for 3D segmentation challenges by their great success in 2D computer vision.However,the task of instance segmentation is currently less explored.In this paper,we propose a novel approach for efficient 3D instance segmentation using red green blue and depth(RGB-D)data based on deep learning.The 2D region based convolutional neural networks(Mask R-CNN)deep learning model with point based rending module is adapted to integrate with depth information to recognize and segment 3D instances of objects.In order to generate 3D point cloud coordinates(x,y,z),segmented 2D pixels(u,v)of recognized object regions in the RGB image are merged into(u,v)points of the depth image.Moreover,we conducted an experiment and analysis to compare our proposed method from various points of view and distances.The experimentation shows the proposed 3D object recognition and instance segmentation are sufficiently beneficial to support object handling in robotic and intelligent systems. 展开更多
关键词 Instance segmentation 3d object segmentation deep learning point cloud coordinates
下载PDF
Adaptive multi-modal feature fusion for far and hard object detection
15
作者 LI Yang GE Hongwei 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第2期232-241,共10页
In order to solve difficult detection of far and hard objects due to the sparseness and insufficient semantic information of LiDAR point cloud,a 3D object detection network with multi-modal data adaptive fusion is pro... In order to solve difficult detection of far and hard objects due to the sparseness and insufficient semantic information of LiDAR point cloud,a 3D object detection network with multi-modal data adaptive fusion is proposed,which makes use of multi-neighborhood information of voxel and image information.Firstly,design an improved ResNet that maintains the structure information of far and hard objects in low-resolution feature maps,which is more suitable for detection task.Meanwhile,semantema of each image feature map is enhanced by semantic information from all subsequent feature maps.Secondly,extract multi-neighborhood context information with different receptive field sizes to make up for the defect of sparseness of point cloud which improves the ability of voxel features to represent the spatial structure and semantic information of objects.Finally,propose a multi-modal feature adaptive fusion strategy which uses learnable weights to express the contribution of different modal features to the detection task,and voxel attention further enhances the fused feature expression of effective target objects.The experimental results on the KITTI benchmark show that this method outperforms VoxelNet with remarkable margins,i.e.increasing the AP by 8.78%and 5.49%on medium and hard difficulty levels.Meanwhile,our method achieves greater detection performance compared with many mainstream multi-modal methods,i.e.outperforming the AP by 1%compared with that of MVX-Net on medium and hard difficulty levels. 展开更多
关键词 3d object detection adaptive fusion multi-modal data fusion attention mechanism multi-neighborhood features
下载PDF
PartLabeling:A label management framework in 3D space
16
作者 Semir ELEZOVIKJ Jianqing JIA +1 位作者 Chiu CTAN Haibin LING 《Virtual Reality & Intelligent Hardware》 EI 2023年第6期490-508,共19页
Background In this work,we focus on the label layout problem:specifying the positions of overlaid virtual annotations in Virtual/Augmented Reality scenarios.Methods Designing a layout of labels that does not violate d... Background In this work,we focus on the label layout problem:specifying the positions of overlaid virtual annotations in Virtual/Augmented Reality scenarios.Methods Designing a layout of labels that does not violate domain-specific design requirements,while at the same time satisfying aesthetic and functional principles of good design,can be a daunting task even for skilled visual designers.Presenting the annotations in 3D object space instead of projection space,allows for the preservation of spatial and depth cues.This results in stable layouts in dynamic environments,since the annotations are anchored in 3D space.Results In this paper we make two major contributions.First,we propose a technique for managing the layout and rendering of annotations in Virtual/Augmented Reality scenarios by manipulating the annotations directly in 3D space.For this,we make use of Artificial Potential Fields and use 3D geometric constraints to adapt them in 3D space.Second,we introduce PartLabeling:an open source platform in the form of a web application that acts as a much-needed generic framework allowing to easily add labeling algorithms and 3D models.This serves as a catalyst for researchers in this field to make their algorithms and implementations publicly available,as well as ensure research reproducibility.The PartLabeling framework relies on a dataset that we generate as a subset of the original PartNet dataset consisting of models suitable for the label management task.The dataset consists of 10003D models with part annotations. 展开更多
关键词 Label layout 3d object space labels
下载PDF
Point Cloud Processing Methods for 3D Point Cloud Detection Tasks
17
作者 WANG Chongchong LI Yao +2 位作者 WANG Beibei CAO Hong ZHANG Yanyong 《ZTE Communications》 2023年第4期38-46,共9页
Light detection and ranging(LiDAR)sensors play a vital role in acquiring 3D point cloud data and extracting valuable information about objects for tasks such as autonomous driving,robotics,and virtual reality(VR).Howe... Light detection and ranging(LiDAR)sensors play a vital role in acquiring 3D point cloud data and extracting valuable information about objects for tasks such as autonomous driving,robotics,and virtual reality(VR).However,the sparse and disordered nature of the 3D point cloud poses significant challenges to feature extraction.Overcoming limitations is critical for 3D point cloud processing.3D point cloud object detection is a very challenging and crucial task,in which point cloud processing and feature extraction methods play a crucial role and have a significant impact on subsequent object detection performance.In this overview of outstanding work in object detection from the 3D point cloud,we specifically focus on summarizing methods employed in 3D point cloud processing.We introduce the way point clouds are processed in classical 3D object detection algorithms,and their improvements to solve the problems existing in point cloud processing.Different voxelization methods and point cloud sampling strategies will influence the extracted features,thereby impacting the final detection performance. 展开更多
关键词 point cloud processing 3d object detection point cloud voxelization bird's eye view deep learning
下载PDF
Augmented Reality Based on Object Recognition for Piping System Maintenance
18
作者 Ana Regina Mizrahy Cuperschmid Mariana Higashi Sakamoto 《Journal of Architectural Environment & Structural Engineering Research》 2021年第2期38-44,共7页
Augmented Reality(AR)applications can be used to improve tasks and mitigate errors during facilities operation and maintenance.This article presents an AR system for facility management using a three-dimensional(3D)ob... Augmented Reality(AR)applications can be used to improve tasks and mitigate errors during facilities operation and maintenance.This article presents an AR system for facility management using a three-dimensional(3D)object tracking method.Through spatial mapping,the object of interest,a pipe trap underneath a sink,is tracked and mixed onto the AR visualization.From that,the maintenance steps are transformed into visible and animated instructions.Although some tracking issues related to the component parts were observed,the designed AR application results demonstrated the potential to improve facility management tasks. 展开更多
关键词 Augmented reality 3d object tracking Maintenance PIPE Facility management
下载PDF
Transforming Education with Photogrammetry:Creating Realistic 3D Objects for Augmented Reality Applications
19
作者 Kaviyaraj Ravichandran Uma Mohan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期185-208,共24页
Augmented reality(AR)is an emerging dynamic technology that effectively supports education across different levels.The increased use of mobile devices has an even greater impact.As the demand for AR applications in ed... Augmented reality(AR)is an emerging dynamic technology that effectively supports education across different levels.The increased use of mobile devices has an even greater impact.As the demand for AR applications in education continues to increase,educators actively seek innovative and immersive methods to engage students in learning.However,exploring these possibilities also entails identifying and overcoming existing barriers to optimal educational integration.Concurrently,this surge in demand has prompted the identification of specific barriers,one of which is three-dimensional(3D)modeling.Creating 3D objects for augmented reality education applications can be challenging and time-consuming for the educators.To address this,we have developed a pipeline that creates realistic 3D objects from the two-dimensional(2D)photograph.Applications for augmented and virtual reality can then utilize these created 3D objects.We evaluated the proposed pipeline based on the usability of the 3D object and performance metrics.Quantitatively,with 117 respondents,the co-creation team was surveyed with openended questions to evaluate the precision of the 3D object created by the proposed photogrammetry pipeline.We analyzed the survey data using descriptive-analytical methods and found that the proposed pipeline produces 3D models that are positively accurate when compared to real-world objects,with an average mean score above 8.This study adds new knowledge in creating 3D objects for augmented reality applications by using the photogrammetry technique;finally,it discusses potential problems and future research directions for 3D objects in the education sector. 展开更多
关键词 Augmented reality education immersive learning 3d object creation photogrammetry and StructureFromMotion
下载PDF
MMDistill:Multi-Modal BEV Distillation Framework for Multi-View 3D Object Detection
20
作者 Tianzhe Jiao Yuming Chen +2 位作者 Zhe Zhang Chaopeng Guo Jie Song 《Computers, Materials & Continua》 SCIE EI 2024年第12期4307-4325,共19页
Multi-modal 3D object detection has achieved remarkable progress,but it is often limited in practical industrial production because of its high cost and low efficiency.The multi-view camera-based method provides a fea... Multi-modal 3D object detection has achieved remarkable progress,but it is often limited in practical industrial production because of its high cost and low efficiency.The multi-view camera-based method provides a feasible solution due to its low cost.However,camera data lacks geometric depth,and only using camera data to obtain high accuracy is challenging.This paper proposes a multi-modal Bird-Eye-View(BEV)distillation framework(MMDistill)to make a trade-off between them.MMDistill is a carefully crafted two-stage distillation framework based on teacher and student models for learning cross-modal knowledge and generating multi-modal features.It can improve the performance of unimodal detectors without introducing additional costs during inference.Specifically,our method can effectively solve the cross-gap caused by the heterogeneity between data.Furthermore,we further propose a Light Detection and Ranging(LiDAR)-guided geometric compensation module,which can assist the student model in obtaining effective geometric features and reduce the gap between different modalities.Our proposed method generally requires fewer computational resources and faster inference speed than traditional multi-modal models.This advancement enables multi-modal technology to be applied more widely in practical scenarios.Through experiments,we validate the effectiveness and superiority of MMDistill on the nuScenes dataset,achieving an improvement of 4.1%mean Average Precision(mAP)and 4.6%NuScenes Detection Score(NDS)over the baseline detector.In addition,we also present detailed ablation studies to validate our method. 展开更多
关键词 3d object detection multi-modal knowledge distillation deep learning remote sensing
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部