Combined multi-body dynamics with structural dynamics, a new discrete element with flexible connector, which is applicable for 3-D beam structures, is developed in this paper. Both the generalized elastic coefficient ...Combined multi-body dynamics with structural dynamics, a new discrete element with flexible connector, which is applicable for 3-D beam structures, is developed in this paper. Both the generalized elastic coefficient matrix of the flexible connector and the mass matrix of discrete element may be off-diagonal in a general case. The zero-length rigid element is introduced to simulate the node at which multiple elements are jointed together. It may also be effective when the axes of adjacent elements are not in the same line. The examples for eigenvalue calculation show that the model is successful. It can be extended to the geometric nonlinear response analysis.展开更多
The three-dimensional finite element method of lines is presented, and the basic processing description of 3D FEMOL in cracking questions is given in detail. Applications to 3D bodies with cracks indicate that good ac...The three-dimensional finite element method of lines is presented, and the basic processing description of 3D FEMOL in cracking questions is given in detail. Applications to 3D bodies with cracks indicate that good accuracy can be obtained with relatively coarse girds. In particular, application to the tension specimen shows very good agreement with the evaluation of stress intensity factors, which is better than the results of other methods. This implies a considerable potential for using this method in the 3D analysis of finite geometry solids and suggests a possible extension of this technique to nonlinear material behavior.展开更多
This paper presents a numerical investigation on the structural performance of an innovative noise barrier consisting of poly-block, rigid polyurethane foam (RPF) and polyurea. The mechanical characteristics of RPF ...This paper presents a numerical investigation on the structural performance of an innovative noise barrier consisting of poly-block, rigid polyurethane foam (RPF) and polyurea. The mechanical characteristics of RPF as well as the flexural resistance of the proposed wall system (poly-wall) were established and presented in another study. The experimental results are used in the current study to develop, calibrate and verify 3D finite element (FE) models of the wall system. The components of the poly-wall including steel rebars, poly-blocks and RPF cores were simulated and then verified using the results of experiments conducted on the wall components. The results of numerical analysis exhibited a satisfactory agreement with the experimental outcomes for the entire wall system. The verified numerical models were then used to conduct a parametric study on the performance of poly-wall models under uniform wind load and gravity load. The findings of the current study confirmed that the structural performance of poly-wall is satisfactory for noise barrier application. Simulation techniques for improvement of the numerical analysis of multi-martial 3D FE models were discussed.展开更多
基金The project was financially supported by the National Natural Science Foundation of China
文摘Combined multi-body dynamics with structural dynamics, a new discrete element with flexible connector, which is applicable for 3-D beam structures, is developed in this paper. Both the generalized elastic coefficient matrix of the flexible connector and the mass matrix of discrete element may be off-diagonal in a general case. The zero-length rigid element is introduced to simulate the node at which multiple elements are jointed together. It may also be effective when the axes of adjacent elements are not in the same line. The examples for eigenvalue calculation show that the model is successful. It can be extended to the geometric nonlinear response analysis.
文摘The three-dimensional finite element method of lines is presented, and the basic processing description of 3D FEMOL in cracking questions is given in detail. Applications to 3D bodies with cracks indicate that good accuracy can be obtained with relatively coarse girds. In particular, application to the tension specimen shows very good agreement with the evaluation of stress intensity factors, which is better than the results of other methods. This implies a considerable potential for using this method in the 3D analysis of finite geometry solids and suggests a possible extension of this technique to nonlinear material behavior.
文摘This paper presents a numerical investigation on the structural performance of an innovative noise barrier consisting of poly-block, rigid polyurethane foam (RPF) and polyurea. The mechanical characteristics of RPF as well as the flexural resistance of the proposed wall system (poly-wall) were established and presented in another study. The experimental results are used in the current study to develop, calibrate and verify 3D finite element (FE) models of the wall system. The components of the poly-wall including steel rebars, poly-blocks and RPF cores were simulated and then verified using the results of experiments conducted on the wall components. The results of numerical analysis exhibited a satisfactory agreement with the experimental outcomes for the entire wall system. The verified numerical models were then used to conduct a parametric study on the performance of poly-wall models under uniform wind load and gravity load. The findings of the current study confirmed that the structural performance of poly-wall is satisfactory for noise barrier application. Simulation techniques for improvement of the numerical analysis of multi-martial 3D FE models were discussed.