期刊文献+
共找到396,195篇文章
< 1 2 250 >
每页显示 20 50 100
Construction and photocatalytic properties toward rhodamine B of CdS/Fe_(3)O_(4) heterojunction
1
作者 CONG Yuan WANG Yunhao +5 位作者 LI Wanping ZHANG Zhicheng LIU Shuo GUO Huiyuan YUAN Hongyu ZHOU Zhiping 《无机化学学报》 SCIE CAS CSCD 北大核心 2024年第11期2241-2249,共9页
A simple two-step hydrothermal method synthesized four different CdS/Fe_(3)O_(4)photocatalysts with varying ratios of mass of CdS to Fe_(3)O_(4).The composition and morphology of the prepared samples were investigated... A simple two-step hydrothermal method synthesized four different CdS/Fe_(3)O_(4)photocatalysts with varying ratios of mass of CdS to Fe_(3)O_(4).The composition and morphology of the prepared samples were investigated using X-ray diffraction(XRD),Raman spectrum,X-ray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM),and transmission electron microscopy(TEM).Solid UV reflectance spectra testing found that CdS/Fe_(3)O_(4)nanocomposites had good light absorption throughout the spectral range,promoting their photocatalytic properties.Under visible light irradiation,CdS/Fe_(3)O_(4)(2∶5)with a mass ratio of 2∶5 exhibited excellent photocatalytic perfor-mance,with a degradation rate of 98.8%for rhodamine B.Furthermore,after five cycles of photocatalytic degrada-tion reaction,the rhodamine B degradation rate remained at 96.2%,indicating that the photocatalysts have good pho-tocatalytic stability. 展开更多
关键词 CdS/Fe_(3)O_(4) PHOTOCATALYST degradation rate rhodamine B
下载PDF
Spheroid construction strategies and application in 3D bioprinting
2
作者 Chunxiang Lu Chuang Gao +4 位作者 Hao Qiao Yi Zhang Huazhen Liu Aoxiang Jin Yuanyuan Liu 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第5期800-818,共19页
Tissue engineering has been striving toward designing and producing natural and functional human tissues.Cells are the fundamental building blocks of tissues.Compared with traditional two-dimensional cultured cells,ce... Tissue engineering has been striving toward designing and producing natural and functional human tissues.Cells are the fundamental building blocks of tissues.Compared with traditional two-dimensional cultured cells,cell spheres are threedimensional(3D)structures that can naturally form complex cell–cell and cell–matrix interactions.This structure is close to the natural environment of cells in living organisms.In addition to being used in disease modeling and drug screening,spheroids have significant potential in tissue regeneration.The 3D bioprinting is an advanced biofabrication technique.It accurately deposits bioinks into predesigned 3D shapes to create complex tissue structures.Although 3D bioprinting is efficient,the time required for cells to develop into complex tissue structures can be lengthy.The 3D bioprinting of spheroids significantly reduces the time required for their development into large tissues/organs during later cultivation stages by printing them with high cell density.Combining spheroid fabrication and bioprinting technology should provide a new solution to many problems in regenerative medicine.This paper systematically elaborates and analyzes the spheroid fabrication methods and 3D bioprinting strategies by introducing spheroids as building blocks.Finally,we present the primary challenges faced by spheroid fabrication and 3D bioprinting with future requirements and some recommendations. 展开更多
关键词 SPHEROIDS STRATEGIES 3D bioprinting BIOFABRICATION
下载PDF
Sparse-view neutron CT 3D image reconstruction algorithm based on split Bregman method
3
作者 Teng-Fei Zhu Yang Liu +1 位作者 Zhi Luo Xiao-Ping Ouyang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第9期41-55,共15页
As a complement to X-ray computed tomography(CT),neutron tomography has been extensively used in nuclear engineer-ing,materials science,cultural heritage,and industrial applications.Reconstruction of the attenuation m... As a complement to X-ray computed tomography(CT),neutron tomography has been extensively used in nuclear engineer-ing,materials science,cultural heritage,and industrial applications.Reconstruction of the attenuation matrix for neutron tomography with a traditional analytical algorithm requires hundreds of projection views in the range of 0°to 180°and typically takes several hours to complete.Such a low time-resolved resolution degrades the quality of neutron imaging.Decreasing the number of projection acquisitions is an important approach to improve the time resolution of images;however,this requires efficient reconstruction algorithms.Therefore,sparse-view reconstruction algorithms in neutron tomography need to be investigated.In this study,we investigated the three-dimensional reconstruction algorithm for sparse-view neu-tron CT scans.To enhance the reconstructed image quality of neutron CT,we propose an algorithm that uses OS-SART to reconstruct images and a split Bregman to solve for the total variation(SBTV).A comparative analysis of the performances of each reconstruction algorithm was performed using simulated and actual experimental data.According to the analyzed results,OS-SART-SBTV is superior to the other algorithms in terms of denoising,suppressing artifacts,and preserving detailed structural information of images. 展开更多
关键词 Neutron CT OS-SART Sparse-view 3D reconstruction Split Bregman Total variation
下载PDF
Development of Multi-Agent-Based Indoor 3D Reconstruction
4
作者 Hoi Chuen Cheng Frederick Ziyang Hong +2 位作者 Babar Hussain Yiru Wang Chik Patrick Yue 《Computers, Materials & Continua》 SCIE EI 2024年第10期161-181,共21页
Large-scale indoor 3D reconstruction with multiple robots faces challenges in core enabling technologies.This work contributes to a framework addressing localization,coordination,and vision processing for multi-agent ... Large-scale indoor 3D reconstruction with multiple robots faces challenges in core enabling technologies.This work contributes to a framework addressing localization,coordination,and vision processing for multi-agent reconstruction.A system architecture fusing visible light positioning,multi-agent path finding via reinforcement learning,and 360°camera techniques for 3D reconstruction is proposed.Our visible light positioning algorithm leverages existing lighting for centimeter-level localization without additional infrastructure.Meanwhile,a decentralized reinforcement learning approach is developed to solve the multi-agent path finding problem,with communications among agents optimized.Our 3D reconstruction pipeline utilizes equirectangular projection from 360°cameras to facilitate depth-independent reconstruction from posed monocular images using neural networks.Experimental validation demonstrates centimeter-level indoor navigation and 3D scene reconstruction capabilities of our framework.The challenges and limitations stemming from the above enabling technologies are discussed at the end of each corresponding section.In summary,this research advances fundamental techniques for multi-robot indoor 3D modeling,contributing to automated,data-driven applications through coordinated robot navigation,perception,and modeling. 展开更多
关键词 Multi-agent system multi-robot human collaboration visible light communication visible light positioning 3D reconstruction reinforcement learning multi-agent path finding
下载PDF
SAR regional all-azimuth observation orbit design for target 3D reconstruction
5
作者 WANG Yanan ZHOU Chaowei +1 位作者 LIU Aifang MAO Qin 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期609-618,共10页
Three-dimensional(3D) synthetic aperture radar(SAR)extends the conventional 2D images into 3D features by several acquisitions in different aspects. Compared with 3D techniques via multiple observations in elevation, ... Three-dimensional(3D) synthetic aperture radar(SAR)extends the conventional 2D images into 3D features by several acquisitions in different aspects. Compared with 3D techniques via multiple observations in elevation, e.g. SAR interferometry(InSAR) and SAR tomography(TomoSAR), holographic SAR can retrieve 3D structure by observations in azimuth. This paper focuses on designing a novel type of orbit to achieve SAR regional all-azimuth observation(AAO) for embedded targets detection and holographic 3D reconstruction. The ground tracks of the AAO orbit separate the earth surface into grids. Target in these grids can be accessed with an azimuth angle span of360°, which is similar to the flight path of airborne circular SAR(CSAR). Inspired from the successive coverage orbits of optical sensors, several optimizations are made in the proposed method to ensure favorable grazing angles, the performance of 3D reconstruction, and long-term supervision for SAR sensors. Simulation experiments show the regional AAO can be completed within five hours. In addition, a second AAO of the same area can be duplicated in two days. Finally, an airborne SAR data process result is presented to illustrate the significance of AAO in 3D reconstruction. 展开更多
关键词 synthetic aperture radar(SAR) orbit design all-azimuth observation(AAO) three-dimensional(3D)reconstruction successive coverage
下载PDF
Efficacy of laparoscopic low anterior resection for colorectal cancer patients with 3D-vascular reconstruction for left coronary artery preservation
6
作者 Ye Wang Zhi-Sheng Liu +2 位作者 Zong-Bao Wang Shawn Liu Feng-Bo Sun 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第6期1548-1557,共10页
BACKGROUND Laparoscopic low anterior resection(LLAR)has become a mainstream surgical method for the treatment of colorectal cancer,which has shown many advantages in the aspects of surgical trauma and postoperative re... BACKGROUND Laparoscopic low anterior resection(LLAR)has become a mainstream surgical method for the treatment of colorectal cancer,which has shown many advantages in the aspects of surgical trauma and postoperative rehabilitation.However,the effect of surgery on patients'left coronary artery and its vascular reconstruction have not been deeply discussed.With the development of medical imaging technology,3D vascular reconstruction has become an effective means to evaluate the curative effect of surgery.AIM To investigate the clinical value of preoperative 3D vascular reconstruction in LLAR of rectal cancer with the left colic artery(LCA)preserved.METHODS A retrospective cohort study was performed to analyze the clinical data of 146 patients who underwent LLAR for rectal cancer with LCA preservation from January to December 2023 in our hospital.All patients underwent LLAR of rectal cancer with the LCA preserved,and the intraoperative and postoperative data were complete.The patients were divided into a reconstruction group(72 patients)and a nonreconstruction group(74 patients)according to whether 3D vascular reconstruction was performed before surgery.The clinical features,operation conditions,complications,pathological results and postoperative recovery of the two groups were collected and compared.RESULTS A total of 146 patients with rectal cancer were included in the study,including 72 patients in the reconstruction group and 74 patients in the nonreconstruction group.There were 47 males and 25 females in the reconstruction group,aged(59.75±6.2)years,with a body mass index(BMI)(24.1±2.2)kg/m^(2),and 51 males and 23 females in the nonreconstruction group,aged(58.77±6.1)years,with a BMI(23.6±2.7)kg/m^(2).There was no significant difference in the baseline data between the two groups(P>0.05).In the submesenteric artery reconstruction group,35 patients were type Ⅰ,25 patients were type Ⅱ,11 patients were type Ⅲ,and 1 patient was type Ⅳ.There were 37 type Ⅰ patients,24 type Ⅱ patients,12 type Ⅲ patients,and 1 type Ⅳ patient in the nonreconstruction group.There was no significant difference in arterial typing between the two groups(P>0.05).The operation time of the reconstruction group was 162.2±10.8 min,and that of the nonreconstruction group was 197.9±19.1 min.Compared with that of the reconstruction group,the operation time of the two groups was shorter,and the difference was statistically significant(t=13.840,P<0.05).The amount of intraoperative blood loss was 30.4±20.0 mL in the reconstruction group and 61.2±26.4 mL in the nonreconstruction group.The amount of blood loss in the reconstruction group was less than that in the control group,and the difference was statistically significant(t=-7.930,P<0.05).The rates of anastomotic leakage(1.4%vs 1.4%,P=0.984),anastomotic hemorrhage(2.8%vs 4.1%,P=0.672),and postoperative hospital stay(6.8±0.7 d vs 7.0±0.7 d,P=0.141)were not significantly different between the two groups.CONCLUSION Preoperative 3D vascular reconstruction technology can shorten the operation time and reduce the amount of intraoperative blood loss.Preoperative 3D vascular reconstruction is recommended to provide an intraoperative reference for laparoscopic low anterior resection with LCA preservation. 展开更多
关键词 Laparoscopic low anterior resection 3D vascular reconstruction Coronary artery Colorectal cancer Retrospective cohort study
下载PDF
Multi-View Image-Based 3D Reconstruction in Indoor Scenes:A Survey
7
作者 LU Ping SHI Wenzhe QIAO Xiuquan 《ZTE Communications》 2024年第3期91-98,共8页
Three-dimensional reconstruction technology plays an important role in indoor scenes by converting objects and structures in indoor environments into accurate 3D models using multi-view RGB images.It offers a wide ran... Three-dimensional reconstruction technology plays an important role in indoor scenes by converting objects and structures in indoor environments into accurate 3D models using multi-view RGB images.It offers a wide range of applications in fields such as virtual reality,augmented reality,indoor navigation,and game development.Existing methods based on multi-view RGB images have made significant progress in 3D reconstruction.These image-based reconstruction methods not only possess good expressive power and generalization performance,but also handle complex geometric shapes and textures effectively.Despite facing challenges such as lighting variations,occlusion,and texture loss in indoor scenes,these challenges can be effectively addressed through deep neural networks,neural implicit surface representations,and other techniques.The technology of indoor 3D reconstruction based on multi-view RGB images has a promising future.It not only provides immersive and interactive virtual experiences but also brings convenience and innovation to indoor navigation,interior design,and virtual tours.As the technology evolves,these image-based reconstruction methods will be further improved to provide higher quality and more accurate solutions to indoor scene reconstruction. 展开更多
关键词 3D reconstruction MVS NeRF neural implicit surface
下载PDF
Process,Material,and Regulatory Considerations for 3D Printed Medical Devices and Tissue Constructs 被引量:1
8
作者 Wei Long Ng Jia An Chee Kai Chua 《Engineering》 SCIE EI CAS CSCD 2024年第5期146-166,共21页
Three-dimensional(3D)printing is a highly automated platform that facilitates material deposition in a layer-by-layer approach to fabricate pre-defined 3D complex structures on demand.It is a highly promising techniqu... Three-dimensional(3D)printing is a highly automated platform that facilitates material deposition in a layer-by-layer approach to fabricate pre-defined 3D complex structures on demand.It is a highly promising technique for the fabrication of personalized medical devices or even patient-specific tissue constructs.Each type of 3D printing technique has its unique advantages and limitations,and the selection of a suitable 3D printing technique is highly dependent on its intended application.In this review paper,we present and highlight some of the critical processes(printing parameters,build orientation,build location,and support structures),material(batch-to-batch consistency,recycling,protein adsorption,biocompatibility,and degradation properties),and regulatory considerations(sterility and mechanical properties)for 3D printing of personalized medical devices.The goal of this review paper is to provide the readers with a good understanding of the various key considerations(process,material,and regulatory)in 3D printing,which are critical for the fabrication of improved patient-specific 3D printed medical devices and tissue constructs. 展开更多
关键词 3D printing BIOPRINTING BIOFABRICATION Medical devices Tissue constructs
下载PDF
基于Construct 3的射击类游戏设计与开发——以飞机大战为例
9
作者 刘树林 杨艳瑜 李博 《微型电脑应用》 2024年第2期14-17,共4页
Construct 3作为小而精的H5跨平台游戏引擎,强大的交互性和用户友好性使其在2D游戏开发方面独具优势。借助Construct 3重构经典射击类游戏“飞机大战”,通过Event Sheet实现游戏中背景循环滚动、动画导入、角色创建与随机运动、游戏难... Construct 3作为小而精的H5跨平台游戏引擎,强大的交互性和用户友好性使其在2D游戏开发方面独具优势。借助Construct 3重构经典射击类游戏“飞机大战”,通过Event Sheet实现游戏中背景循环滚动、动画导入、角色创建与随机运动、游戏难度控制、游戏变量控制等主要功能。经过测试,游戏可打包发布成Web、移动设备和PC端.exe格式,游戏交互、特效运行流畅,游戏变量与难度控制处于合理范围。 展开更多
关键词 construct 3 游戏开发 射击类游戏
下载PDF
Engineering Nano/Microscale Chiral Self‑Assembly in 3D Printed Constructs 被引量:1
10
作者 Mohsen Esmaeili Ehsan Akbari +3 位作者 Kyle George Gelareh Rezvan Nader Taheri‑Qazvini Monirosadat Sadati 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期313-332,共20页
Helical hierarchy found in biomolecules like cellulose,chitin,and collagen underpins the remarkable mechanical strength and vibrant colors observed in living organisms.This study advances the integration of helical/ch... Helical hierarchy found in biomolecules like cellulose,chitin,and collagen underpins the remarkable mechanical strength and vibrant colors observed in living organisms.This study advances the integration of helical/chiral assembly and 3D printing technology,providing precise spatial control over chiral nano/microstructures of rod-shaped colloidal nanoparticles in intricate geometries.We designed reactive chiral inks based on cellulose nanocrystal(CNC)suspensions and acrylamide monomers,enabling the chiral assembly at nano/microscale,beyond the resolution seen in printed materials.We employed a range of complementary techniques including Orthogonal Superposition rheometry and in situ rheo-optic measurements under steady shear rate conditions.These techniques help us to understand the nature of the nonlinear flow behavior of the chiral inks,and directly probe the flow-induced microstructural dynamics and phase transitions at constant shear rates,as well as their post-flow relaxation.Furthermore,we analyzed the photo-curing process to identify key parameters affecting gelation kinetics and structural integrity of the printed object within the supporting bath.These insights into the interplay between the chiral inks self-assembly dynamics,3D printing flow kinematics and photopolymerization kinetics provide a roadmap to direct the out-of-equilibrium arrangement of CNC particles in the 3D printed filaments,ranging from uniform nematic to 3D concentric chiral structures with controlled pitch length,as well as random orientation of chiral domains.Our biomimetic approach can pave the way for the creation of materials with superior mechanical properties or programable photonic responses that arise from 3D nano/microstructure and can be translated into larger scale 3D printed designs. 展开更多
关键词 Directed chiral self-assembly Cellulose nanocrystals Bioinspired nanocomposite 3D printing RHEOLOGY
下载PDF
Constructing long-cycling crystalline C_(3)N_(4)-based carbonaceous anodes for sodium-ion battery via N configuration control 被引量:1
11
作者 Ying Wang Hongguan Li +5 位作者 Shuanlong Di Boyin Zhai Ping Niu Antonios Kelarakis Shulan Wang Li Li 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期159-171,共13页
Carbon nitrides with two-dimensional layered structures and high theoretical capacities are attractive as anode materials for sodium-ion batteries while their low crystallinity and insufficient structural stability st... Carbon nitrides with two-dimensional layered structures and high theoretical capacities are attractive as anode materials for sodium-ion batteries while their low crystallinity and insufficient structural stability strongly restrict their practical applications.Coupling carbon nitrides with conductive carbon may relieve these issues.However,little is known about the influence of nitrogen(N)configurations on the interactions between carbon and C_(3)N_(4),which is fundamentally critical for guiding the precise design of advanced C_(3)N_(4)-related electrodes.Herein,highly crystalline C_(3)N_(4)(poly(triazine imide),PTI)based all-carbon composites were developed by molten salt strategy.More importantly,the vital role of pyrrolic-N for enhancing charge transfer and boosting Na+storage of C_(3)N_(4)-based composites,which was confirmed by both theoretical and experimental evidence,was spot-highlighted for the first time.By elaborately controlling the salt composition,the composite with high pyrrolic-N and minimized graphitic-N content was obtained.Profiting from the formation of highly crystalline PTI and electrochemically favorable pyrrolic-N configurations,the composite delivered an unusual reverse growth and record-level cycling stability even after 5000 cycles along with high reversible capacity and outstanding full-cell capacity retention.This work broadens the energy storage applications of C_(3)N_(4) and provides new prospects for the design of advanced all-carbon electrodes. 展开更多
关键词 ANODE highly crystalline C_(3)N_(4) N configuration sodium-ion batteries ultra-long cyclic stability
下载PDF
Constructing a biofunctionalized 3D-printed gelatin/sodium alginate/chitosan tri-polymer complex scaffold with improvised biological andmechanical properties for bone-tissue engineering
12
作者 Amit Kumar Singh Krishna Pramanik Amit Biswas 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第1期57-73,共17页
Sodium alginate(SA)/chitosan(CH)polyelectrolyte scaffold is a suitable substrate for tissue-engineering application.The present study deals with further improvement in the tensile strength and biological properties of... Sodium alginate(SA)/chitosan(CH)polyelectrolyte scaffold is a suitable substrate for tissue-engineering application.The present study deals with further improvement in the tensile strength and biological properties of this type of scaffold to make it a potential template for bone-tissue regeneration.We experimented with adding 0%–15%(volume fraction)gelatin(GE),a protein-based biopolymer known to promote cell adhesion,proliferation,and differentiation.The resulting tri-polymer complex was used as bioink to fabricate SA/CH/GEmatrices by three-dimensional(3D)printing.Morphological studies using scanning electron microscopy revealed the microfibrous porous architecture of all the structures,which had a pore size range of 383–419μm.X-ray diffraction and Fourier-transform infrared spectroscopy analyses revealed the amorphous nature of the scaffold and the strong electrostatic interactions among the functional groups of the polymers,thereby forming polyelectrolyte complexes which were found to improve mechanical properties and structural stability.The scaffolds exhibited a desirable degradation rate,controlled swelling,and hydrophilic characteristics which are favorable for bone-tissue engineering.The tensile strength improved from(386±15)to(693±15)kPa due to the increased stiffness of SA/CH scaffolds upon addition of gelatin.The enhanced protein adsorption and in vitro bioactivity(forming an apatite layer)confirmed the ability of the SA/CH/GE scaffold to offer higher cellular adhesion and a bone-like environment to cells during the process of tissue regeneration.In vitro biological evaluation including the MTT assay,confocal microscopy analysis,and alizarin red S assay showed a significant increase in cell attachment,cell viability,and cell proliferation,which further improved biomineralization over the scaffold surface.In addition,SA/CH containing 15%gelatin designated as SA/CH/GE15 showed superior performance to the other fabricated 3D structures,demonstrating its potential for use in bone-tissue engineering. 展开更多
关键词 SCAFFOLD Biomaterial Sodium alginate CHITOSAN GELATIN 3D printing Tissue engineering
下载PDF
Improvement of Ga_(2)O_(3)vertical Schottky barrier diode by constructing NiO/Ga_(2)O_(3)heterojunction
13
作者 Xueqiang Ji Jinjin Wang +11 位作者 Song Qi Yijie Liang Shengrun Hu Haochen Zheng Sai Zhang Jianying Yue Xiaohui Qi Shan Li Zeng Liu Lei Shu Weihua Tang Peigang Li 《Journal of Semiconductors》 EI CAS CSCD 2024年第4期63-68,共6页
The high critical electric field strength of Ga_(2)O_(3)enables higher operating voltages and reduced switching losses in power electronic devices.Suitable Schottky metals and epitaxial films are essential for further... The high critical electric field strength of Ga_(2)O_(3)enables higher operating voltages and reduced switching losses in power electronic devices.Suitable Schottky metals and epitaxial films are essential for further enhancing device performance.In this work,the fabrication of vertical Ga_(2)O_(3)barrier diodes with three different barrier metals was carried out on an n--Ga_(2)O_(3)homogeneous epitaxial film deposited on an n+-β-Ga_(2)O_(3)substrate by metal-organic chemical vapor deposition,excluding the use of edge terminals.The ideal factor,barrier height,specific on-resistance,and breakdown voltage characteristics of all devices were investigated at room temperature.In addition,the vertical Ga_(2)O_(3)barrier diodes achieve a higher breakdown volt-age and exhibit a reverse leakage as low as 4.82×10^(-8)A/cm^(2)by constructing a NiO/Ga_(2)O_(3)heterojunction.Therefore,Ga_(2)O_(3)power detailed investigations into Schottky barrier metal and NiO/Ga_(2)O_(3)heterojunction of Ga_(2)O_(3)homogeneous epitaxial films are of great research potential in high-efficiency,high-power,and high-reliability applications. 展开更多
关键词 Ga_(2)O_(3) Schottky barrier diode NiO/Ga_(2)O_(3)heterojunction
下载PDF
Construct a 3D microsphere of HMX/B/Al/PTFE to obtain the high energy and combustion reactivity
14
作者 Jian Wang Jie Chen +4 位作者 Yaofeng Mao Yongjun Deng Wei Cao Fude Nie Jun Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期45-54,共10页
Metal(aluminum and boron)based energetic materials have been wildly applied in various fields including aerospace,explosives and micro-devices due to their high energy density.Unfortunately,the low combustion efficien... Metal(aluminum and boron)based energetic materials have been wildly applied in various fields including aerospace,explosives and micro-devices due to their high energy density.Unfortunately,the low combustion efficiency and reactivity of metal fuels,especially boron(B),severely limit their practical applications.Herein,multi-component 3D microspheres of HMX/B/Al/PTFE(HBA)have been designed and successfully prepared by emulsion and solvent evaporation method to achieve superior energy and combustion reactivity.The reactivity and energy output of HBA are systematically measured by ignitionburning test,constant-volume explosion vessel system and bomb calorimetry.Due to the increased interfacial contact and reaction area,HBA shows higher flame propagation rate,faster pressurization rate and larger combustion heat of 29.95 cm/s,1077 kPa/s,and 6164.43 J/g,which is 1.5 times,3.5 times,and 1.03 times of the physical mixed counterpart(HBA-P).Meanwhile,HBA also shows enhanced energy output and reactivity than 3D microspheres of HMX/B/PTFE(HB)resulting from the high reactivity of Al.The reaction mechanism of 3D microspheres is comprehensively investigated through combustion emission spectral and thermal analysis(TG-DSC-MS).The superior reactivity and energy of HBA originate from the surface etching of fluorine to the inert shell(Al_(2)O_(3) and B_(2)O_(3))and the initiation effect of Al to B.This work offers a promising approach to design and prepare high-performance energetic materials for the practical applications. 展开更多
关键词 HMX/B/Al/PTFE 3D microspheres Surface etching Reaction mechanism
下载PDF
Enhanced photocatalytic nitrogen fixation performance via in situ constructing BiO_(2-x)/NaNbO_(3) heterojunction
15
作者 Jiayu Zhang Zhihao Zeng +5 位作者 Lin Yue Chunran Zhao Xin Hu Leihong Zhao Xiuwen Wang Yiming He 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期92-100,共9页
The fabrication of heterojunction catalysts is an effective strategy to enhance charge separation efficiency,thereby boosting the performance of photocatalysts.In this study,BiO_(2-x)nanosheets were synthesized throug... The fabrication of heterojunction catalysts is an effective strategy to enhance charge separation efficiency,thereby boosting the performance of photocatalysts.In this study,BiO_(2-x)nanosheets were synthesized through a hydrothermal process and loaded onto NaNbO_(3) microcube to construct a series of BiO_(2-x)/NaNbO_(3) heterojunctions for photocatalytic N_(2) fixation.Results indicated that 2.5%BiO_(2-x)/NaNbO_(3) had the highest photocatalytic performance.The NH_(3) production rate under simulated solar light reached 406.4μmol·L^(-1)·g^(-1)·h^(-1),which reaches 2.6 and 3.8 times that of NaNbO_(3) and BiO_(2-x),respectively.BiO_(2-x)nanosheets primarily act as electron trappers to enhance the separation efficiency of charge carriers.The strong interaction between BiO_(2-x)and NaNbO_(3) facilitates the electron migration between them.Meanwhile,the abundant oxygen vacancies in BiO_(2-x)nanosheets may facilitate the adsorption and activation of N_(2),which may be another possible reason of the high photocatalytic activity of the BiO_(2-x)/NaNbO_(3).This study may offer new insights for the development of semiconductor materials in photocatalytic nitrogen fixation. 展开更多
关键词 Catalyst Solar energy HYDROTHERMAL BiO_(2-x)/NaNbO_(3) Photocatalytic N_(2)-fixation
下载PDF
Construction of Ru/WO3 with hetero-interface structure for efficient hydrogen evolution reaction 被引量:3
16
作者 Xin Xie Yunxiao Fan +6 位作者 Wanyu Tian Meng Zhang Jialin Cai Xingang Zhang Jie Ding Yushan Liu Siyu Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期150-157,I0006,共9页
Water electrolysis is considered as one most promising technique for hydrogen production.The high efficiency electrocatalyst is the key to accelerating the sluggish kinetics of the hydrogen evolution reaction(HER) in ... Water electrolysis is considered as one most promising technique for hydrogen production.The high efficiency electrocatalyst is the key to accelerating the sluggish kinetics of the hydrogen evolution reaction(HER) in alkaline media.In this work,an efficient HER electrocatalyst with hetero-interfacial metal-metal oxide structure was constructed through a redox solid phase reaction(SPR) strategy.During the annealing process under Ar atmosphere,RuO_(2) and WS_(2)in RuO_(2)/WS_(2)precursor were converted to Ru nanoparticles(NPs) and WO3in situ,where tiny Ru NPs and oxygen vacancies were uniformly distributed onto the newly formed WO3nanosheets.Different characterization techniques were adopted to confirm the successful formation of Ru/WO_(3)electrocatalyst(RWOC).The optimized RWOC sample annealed at 400℃ exhibited the low overpotential value of 13 mV at a current density of 10 mA cm^(-2)and strong durability under the alkaline condition.Density functional theoretical calculations further revealed that the promoted adsorption/desorption rate of reaction intermediates and the accelerated kinetics of HER process were deduced to the synergistic effect between Ru and WO_(3)in electrocatalyst.This work provides a feasible method to fabricate highly efficient HER electrocatalysts. 展开更多
关键词 RU WO_(3) Hetero-interface Hydrogen evolution reaction ELECTROCATALYST
下载PDF
Rapid printing of 3D porous scaffolds for breast reconstruction 被引量:2
17
作者 Pengcheng Zhao Biling Wang +5 位作者 Lu Wang Zexin Fu Jun Hu Yande Liu Ji Wang Yong He 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2023年第6期691-703,共13页
Prosthesis implantation and fat transplantation are common breast reconstructionmethods.In general,prosthesis implantation alone does not achieve a realistic enough appearance,and fat transplantation alone is difficul... Prosthesis implantation and fat transplantation are common breast reconstructionmethods.In general,prosthesis implantation alone does not achieve a realistic enough appearance,and fat transplantation alone is difficult to achieve in the correct capacity.To date,no reports have focused on methods of combining fat with implanted prostheses for breast reconstruction.Using a newly designed bionic ink(i.e.,polyether F127 diacrylate(F127DA)&poly(ethylene glycol)diacrylate(PEGDA))and projection-based three-dimensional bioprinting(PBP),we report the development of a new method for printing porous prostheses.PEGDA was used to improve the printing precision of the prosthesis by increasing the gel point of F127DA and reducing the impact of external temperature.The compression modulus of the printed prosthesis was very close to that of prostheses currently used in clinical practice and to that of natural breasts.Finally,stromal vascular fraction gel(SVF-gel),a human fat extract,was injected into the pores of the synthesized prostheses to prepare a prosthesis mixed with adipose tissue.These were implanted subcutaneously in nude mice to observe their biological performance.After 14 and 28 days of observation,the prosthesis showed good biocompatibility,and adipose tissues grew well in and around the prosthesis.This result shows that a porous prosthesis containing pre-placed adipose tissues is a promising breast reconstruction material. 展开更多
关键词 Projection-based 3D bioprinting(PBP) F127DA Breast reconstruction Fat transplantation
下载PDF
沈阳市O_(3)与PM_(2.5)关系及污染主控因素分析 被引量:3
18
作者 洪也 马雁军 +5 位作者 苏枞枞 王扬锋 任万辉 王继康 王东东 徐晓斌 《环境科学研究》 CAS CSCD 北大核心 2024年第3期455-468,共14页
PM_(2.5)与O_(3)的协同控制是空气质量持续改善的关键所在,厘清PM_(2.5)与O_(3)的关系,识别O_(3)主控因素以及量化气象和人为排放贡献是实施二者协同控制的基础.本研究基于沈阳市大气复合立体超级站2019−2022年地面观测数据,分析PM_(2.5... PM_(2.5)与O_(3)的协同控制是空气质量持续改善的关键所在,厘清PM_(2.5)与O_(3)的关系,识别O_(3)主控因素以及量化气象和人为排放贡献是实施二者协同控制的基础.本研究基于沈阳市大气复合立体超级站2019−2022年地面观测数据,分析PM_(2.5)和O_(3)协同关系及成因;利用逐步回归模型得到影响O_(3)变化的主控因素,并估算各气象因素对O_(3)的贡献.结果表明:①沈阳市2019−2022年夏季PM_(2.5)浓度与O_(3)浓度呈正相关,有明显的协同增长效应,其余三季均呈明显负相关.究其原因,主要是由于夏季高温和高太阳辐射条件利于大气光化学反应,促进了O_(3)、PM_(2.5)中二次无机成分〔主要是硫酸盐(SO_(4)^(2−))、硝酸盐(NO_(3)−)和铵盐(NH_(4)^(+)),简称“SNA”〕共同增长所致;而冬季高排放和高大气稳定度等气象条件利于SNA和二次有机碳(SOC)非均相生成,但弱太阳辐射和低温等条件不利于O_(3)光化学生成,加之高NO的滴定效应,使SNA和SOC浓度均与O_(3)浓度呈负相关.②在观测的相关污染物和气象因子中,过氧乙酰硝酸酯(PAN)与O_(3)浓度的关系最为密切,尤其在夏季.③气象因素中,O_(3)浓度与气温高度相关,与风速也呈正相关,而与相对湿度则在各季节均呈负相关.冬、春、秋三季PM_(2.5)均对O_(3)起抑制作用,冬季尤为突出.在高浓度O_(3)污染(O_(3)浓度>160μg/m^(3))过程中,主控因素中气温和风速的抬升促进O_(3)浓度升高,而高NO2和相对湿度(RH)则有利于降低O_(3)浓度.在2019−2022年高浓度O_(3)污染过程中,气象因素对沈阳市O_(3)浓度变化的贡献高于O_(3)前体物排放的贡献,总贡献为57μg/m^(3),对污染形成起着主导作用. 展开更多
关键词 PM_(2.5) O_(3) PM_(2.5)与O_(3)协同作用 气象因素 逐步回归模型
下载PDF
Parallel computing approach for efficient 3-D X-ray-simulated image reconstruction 被引量:1
19
作者 Ou-Yi Li Yang Wang +1 位作者 Qiong Zhang Yong-Hui Li 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第7期122-136,共15页
Accurate 3-dimensional(3-D)reconstruction technology for nondestructive testing based on digital radiography(DR)is of great importance for alleviating the drawbacks of the existing computed tomography(CT)-based method... Accurate 3-dimensional(3-D)reconstruction technology for nondestructive testing based on digital radiography(DR)is of great importance for alleviating the drawbacks of the existing computed tomography(CT)-based method.The commonly used Monte Carlo simulation method ensures well-performing imaging results for DR.However,for 3-D reconstruction,it is limited by its high time consumption.To solve this problem,this study proposes a parallel computing method to accelerate Monte Carlo simulation for projection images with a parallel interface and a specific DR application.The images are utilized for 3-D reconstruction of the test model.We verify the accuracy of parallel computing for DR and evaluate the performance of two parallel computing modes-multithreaded applications(G4-MT)and message-passing interfaces(G4-MPI)-by assessing parallel speedup and efficiency.This study explores the scalability of the hybrid G4-MPI and G4-MT modes.The results show that the two parallel computing modes can significantly reduce the Monte Carlo simulation time because the parallel speedup increment of Monte Carlo simulations can be considered linear growth,and the parallel efficiency is maintained at a high level.The hybrid mode has strong scalability,as the overall run time of the 180 simulations using 320 threads is 15.35 h with 10 billion particles emitted,and the parallel speedup can be up to 151.36.The 3-D reconstruction of the model is achieved based on the filtered back projection(FBP)algorithm using 180 projection images obtained with the hybrid G4-MPI and G4-MT.The quality of the reconstructed sliced images is satisfactory because the images can reflect the internal structure of the test model.This method is applied to a complex model,and the quality of the reconstructed images is evaluated. 展开更多
关键词 Parallel computing Monte Carlo Digital radiography 3-D reconstruction
下载PDF
3D printing of personalized polylactic acid scaffold laden with GelMA/autologous auricle cartilage to promote ear reconstruction 被引量:1
20
作者 Xingyu Gui Zhiyu Peng +13 位作者 Ping Song Li Chen Xiujuan Xu Hairui Li Pei Tang Yixi Wang Zixuan Su Qingquan Kong Zhenyu Zhang Zhengyong Li Ying Cen Changchun Zhou Yujiang Fan Xingdong Zhang 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2023年第4期451-463,共13页
At present,the clinical reconstruction of the auricle usually adopts the strategy of taking autologous costal cartilage.This method has great trauma to patients,poor plasticity and inaccurate shaping.Three-dimensional... At present,the clinical reconstruction of the auricle usually adopts the strategy of taking autologous costal cartilage.This method has great trauma to patients,poor plasticity and inaccurate shaping.Three-dimensional(3D)printing technology has made a great breakthrough in the clinical application of orthopedic implants.This study explored the combination of 3D printing and tissue engineering to precisely reconstruct the auricle.First,a polylactic acid(PLA)polymer scaffold with a precisely customized patient appearance was fabricated,and then auricle cartilage fragments were loaded into the 3D-printed porous PLA scaffold to promote auricle reconstruction.In vitro,gelatin methacrylamide(GelMA)hydrogels loaded with different sizes of rabbit ear cartilage fragments were studied to assess the regenerative activity of various autologous cartilage fragments.In vivo,rat ear cartilage fragments were placed in an accurately designed porous PLA polymer ear scaffold to promote auricle reconstruction.The results indicated that the chondrocytes in the cartilage fragments could maintain the morphological phenotype in vitro.After three months of implantation observation,it was conducive to promoting the subsequent regeneration of cartilage in vivo.The autologous cartilage fragments combined with 3D printing technology show promising potential in auricle reconstruction. 展开更多
关键词 MICROTIA 3D printing Polylactic acid(PLA)polymer scaffolds Gelatin methacrylamide Cartilage reconstruction
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部