Expression, occlusion, and pose variations are three main challenges for 3D face recognition. A novel method is presented to address 3D face recognition using scale-invariant feature transform(SIFT) features on 3D mes...Expression, occlusion, and pose variations are three main challenges for 3D face recognition. A novel method is presented to address 3D face recognition using scale-invariant feature transform(SIFT) features on 3D meshes. After preprocessing, shape index extrema on the 3D facial surface are selected as keypoints in the difference scale space and the unstable keypoints are removed after two screening steps. Then, a local coordinate system for each keypoint is established by principal component analysis(PCA).Next, two local geometric features are extracted around each keypoint through the local coordinate system. Additionally, the features are augmented by the symmetrization according to the approximate left-right symmetry in human face. The proposed method is evaluated on the Bosphorus, BU-3DFE, and Gavab databases, respectively. Good results are achieved on these three datasets. As a result, the proposed method proves robust to facial expression variations, partial external occlusions and large pose changes.展开更多
The probability of medical staff to get affected from COVID19 is much higher due to their working environment which is more exposed to infectious diseases.So,as a preventive measure the body temperature monitoring of ...The probability of medical staff to get affected from COVID19 is much higher due to their working environment which is more exposed to infectious diseases.So,as a preventive measure the body temperature monitoring of medical staff at regular intervals is highly recommended.Infrared temperature sensing guns have proved its effectiveness and therefore such devices are used to monitor the body temperature.These devices are either used on hands or forehead.As a result,there are many issues in monitoring the temperature of frontline healthcare professionals.Firstly,these healthcare professionals keep wearing PPE(Personal Protective Equipment)kits during working hours and as a result it would be very difficult to monitor their body temperature.Secondly,these healthcare professionals also wear face shields and in such cases monitoring temperature by exposing forehead needs removal of face shield.Doing so after regular intervals is surely uncomfortable for healthcare professionals.To avoid such issues,this paper is disclosing a technologically advanced face shield equipped with sensors capable of monitoring body temperature instantly without the hassle of removing the face shield.This face shield is integrated with a built-in infrared temperature sensor.A total of 10 such face shields were printed and assembled within the university lab and then handed over to a group of ten members including faculty and students of nursing and health science department.This sequence was repeated four times and as a result 40 healthcare workers participated in the study.Thereafter,feedback analysis was conducted on questionnaire data and found a significant overall mean score of 4.59 out of 5 which indicates that the product is effective and worthy in every facet.Stress analysis is also performed in the simulated environment and found that the device can easily withstand the typically applied forces.The limitations of this product are difficulty in cleaning the product and comparatively high cost due to the deployment of electronic equipment.展开更多
Background The accurate(quantitative)analysis of 3D face deformation is a problem of increasing interest in many applications.In particular,defining a 3D model of the face deformation into a 2D target image to capture...Background The accurate(quantitative)analysis of 3D face deformation is a problem of increasing interest in many applications.In particular,defining a 3D model of the face deformation into a 2D target image to capture local and asymmetric deformations remains a challenge in existing literature.A measure of such local deformations may be a relevant index for monitoring the rehabilitation exercises of patients suffering from Par-kinson’s or Alzheimer’s disease or those recovering from a stroke.Methods In this paper,a complete framework that allows the construction of a 3D morphable shape model(3DMM)of the face is presented for fitting to a target RGB image.The model has the specific characteristic of being based on localized components of deformation.The fitting transformation is performed from 3D to 2D and guided by the correspondence between landmarks detected in the target image and those manually annotated on the average 3DMM.The fitting also has the distinction of being performed in two steps to disentangle face deformations related to the identity of the target subject from those induced by facial actions.Results The method was experimentally validated using the MICC-3D dataset,which includes 11 subjects.Each subject was imaged in one neutral pose and while performing 18 facial actions that deform the face in localized and asymmetric ways.For each acquisition,3DMM was fit to an RGB frame whereby,from the apex facial action and the neutral frame,the extent of the deformation was computed.The results indicate that the proposed approach can accurately capture face deformation,even localized and asymmetric deformations.Conclusion The proposed framework demonstrated that it is possible to measure deformations of a reconstructed 3D face model to monitor facial actions performed in response to a set of targets.Interestingly,these results were obtained using only RGB targets,without the need for 3D scans captured with costly devices.This paves the way for the use of the proposed tool in remote medical rehabilitation monitoring.展开更多
Coal working face is damaged more and more seriously by water below the coal face floor. Therefore, floor water detection is a must in the process of extraction. This article aims to introducing application and princi...Coal working face is damaged more and more seriously by water below the coal face floor. Therefore, floor water detection is a must in the process of extraction. This article aims to introducing application and principle of the two-gateways parallel 3-D electrical technology and the arrangement of the observation system. The authors use this method to detect the water under the floor of a mine in north of Anhui. The results show that the two-gateways parallel 3-D electrical technology can accurately locate the water-rich areas, providing the basis for drilling drainage and grouting construction.展开更多
In the current study, a numerical investigation of three-dimensional combined convection-radiation heat transfer over an inclined forward facing step (FFS) in a horizontal rectangular duct is presented. The fluid is t...In the current study, a numerical investigation of three-dimensional combined convection-radiation heat transfer over an inclined forward facing step (FFS) in a horizontal rectangular duct is presented. The fluid is treated as a gray, absorbing, emitting and scattering medium. To simulate the incline surface of FFS, the blocked-off method is employed in this study. The set of governing equations for gas flow are solved numerically using the CFD technique to obtain the temperature and velocity fields. Since the gas is considered as a radiating medium, all of the convection, conduction and radiation heat transfer mechanisms are presented in the energy equation. For computation of radiative term in energy equation, the radiative transfer equation (RTE) is solved numerically by the discrete ordinates method (DOM) to find the divergence of radiative heat flux distribution inside the radiating medium. The effects of optical thickness, radiation-conduction parameter and albedo coefficient on heat transfer behavior of the system are carried out.展开更多
As a popular kind of stylized face,cartoon faces have rich application scenarios.It is challenging to create personalized 3D cartoon faces directly from 2D real photos.Besides,in order to adapt to more application sce...As a popular kind of stylized face,cartoon faces have rich application scenarios.It is challenging to create personalized 3D cartoon faces directly from 2D real photos.Besides,in order to adapt to more application scenarios,automatic style editing,and animation of cartoon faces is also a crucial problem that is urgently needed to be solved in the industry,but has not yet had a perfect solution.To solve this problem,we first propose“3D face cartoonizer”,which can generate high-quality 3D cartoon faces with texture when fed into 2D facial images.We contribute the first 3D cartoon face hybrid dataset and a new training strategy which first pretrains our network with low-quality triplets in a reconstruction-then-generation manner,and then finetunes it with high-quality triplets in an adversarial manner to fully leverage the hybrid dataset.Besides,we implement style editing for 3D cartoon faces based on k-means,which can be easily achieved without retrain the neural network.In addition,we propose a new cartoon faces'blendshape generation method,and based on this,realize the expression animation of 3D cartoon faces,enabling more practical applications.Our dataset and code will be released for future research.展开更多
3D face similarity is a critical issue in computer vision, computer graphics and face recognition and so on. Since Fr@chet distance is an effective metric for measuring curve similarity, a novel 3D face similarity mea...3D face similarity is a critical issue in computer vision, computer graphics and face recognition and so on. Since Fr@chet distance is an effective metric for measuring curve similarity, a novel 3D face similarity measure method based on Fr^chet distances of geodesics is proposed in this paper. In our method, the surface similarity between two 3D faces is measured by the similarity between two sets of 3D curves on them. Due to the intrinsic property of geodesics, we select geodesics as the comparison curves. Firstly, the geodesics on each 3D facial model emanating from the nose tip point are extracted in the same initial direction with equal angular increment. Secondly, the Fr@chet distances between the two sets of geodesics on the two compared facial models are computed. At last, the similarity between the two facial models is computed based on the Fr6chet distances of the geodesics obtained in the second step. We verify our method both theoretically and practically. In theory, we prove that the similarity of our method satisfies three properties: reflexivity, symmetry, and triangle inequality. And in practice, experiments are conducted on the open 3D face database GavaDB, Texas 3D Face Recognition database, and our 3D face database. After the comparison with iso-geodesic and Hausdorff distance method, the results illustrate that our method has good discrimination ability and can not only identify the facial models of the same person, but also distinguish the facial models of any two different persons.展开更多
Cascaded regression has been recently applied to reconstruct 3D faces from single 2D images directly in shape space, and has achieved state-of-the-art performance. We investigate thoroughly such cascaded regression ba...Cascaded regression has been recently applied to reconstruct 3D faces from single 2D images directly in shape space, and has achieved state-of-the-art performance. We investigate thoroughly such cascaded regression based 3D face reconstruction approaches from four perspectives that are not well been studied: (1) the impact of the number of 2D landmarks; (2) the impact of the number of 3D vertices; (3) the way of using standalone automated landmark detection methods; (4) the convergence property. To answer these questions, a simplified cascaded regression based 3D face reconstruction method is devised. This can be integrated with standalone automated landmark detection methods and reconstruct 3D face shapes that have the same pose and expression as the input face images, rather than normalized pose and expression. An effective training method is also proposed by disturbing the automatically detected landmarks. Comprehensive evaluation experiments have been carried out to compare to other 3D face reconstruction methods. The results not only deepen the understanding of cascaded regression based 3D face reconstruction approaches, but also prove the effectiveness of the proposed method.展开更多
In the past ten years,research on face recognition has shifted to using 3D facial surfaces,as 3D geometric information provides more discriminative features.This comprehensive survey reviews 3D face recognition techni...In the past ten years,research on face recognition has shifted to using 3D facial surfaces,as 3D geometric information provides more discriminative features.This comprehensive survey reviews 3D face recognition techniques developed in the past decade,both conventional methods and deep learning methods.These methods are evaluated with detailed descriptions of selected representative works.Their advantages and disadvantages are summarized in terms of accuracy,complexity,and robustness to facial variations(expression,pose,occlusion,etc.).A review of 3D face databases is also provided,and a discussion of future research challenges and directions of the topic.展开更多
A 3D face recognition approach which uses principal axes registration(PAR)and three face representation features from the re-sampling depth image:Eigenfaces,Fisherfaces and Zernike moments is presented.The approach ad...A 3D face recognition approach which uses principal axes registration(PAR)and three face representation features from the re-sampling depth image:Eigenfaces,Fisherfaces and Zernike moments is presented.The approach addresses the issue of 3D face registration instantly achieved by PAR.Because each facial feature has its own advantages,limitations and scope of use,different features will complement each other.Thus the fusing features can learn more expressive characterizations than a single feature.The support vector machine(SVM)is applied for classification.In this method,based on the complementarity between different features,weighted decision-level fusion makes the recognition system have certain fault tolerance.Experimental results show that the proposed approach achieves superior performance with the rank-1 recognition rate of 98.36%for GavabDB database.展开更多
In this paper, we present a new technique of 3D face reconstruction from a sequence of images taken with cameras having varying parameters without the need to grid. This method is based on the estimation of the projec...In this paper, we present a new technique of 3D face reconstruction from a sequence of images taken with cameras having varying parameters without the need to grid. This method is based on the estimation of the projection matrices of the cameras from a symmetry property which characterizes the face, these projections matrices are used with points matching in each pair of images to determine the 3D points cloud, subsequently, 3D mesh of the face is constructed with 3D Crust algorithm. Lastly, the 2D image is projected on the 3D model to generate the texture mapping. The strong point of the proposed approach is to minimize the constraints of the calibration system: we calibrated the cameras from a symmetry property which characterizes the face, this property gives us the opportunity to know some points of 3D face in a specific well-chosen global reference, to formulate a system of linear and nonlinear equations according to these 3D points, their projection in the image plan and the elements of the projections matrix. Then to solve these equations, we use a genetic algorithm which consists of finding the global optimum without the need of the initial estimation and allows to avoid the local minima of the formulated cost function. Our study is conducted on real data to demonstrate the validity and the performance of the proposed approach in terms of robustness, simplicity, stability and convergence.展开更多
基金Project(XDA06020300)supported by the"Strategic Priority Research Program"of the Chinese Academy of SciencesProject(12511501700)supported by the Research on the Key Technology of Internet of Things for Urban Community Safety Based on Video Sensor networks
文摘Expression, occlusion, and pose variations are three main challenges for 3D face recognition. A novel method is presented to address 3D face recognition using scale-invariant feature transform(SIFT) features on 3D meshes. After preprocessing, shape index extrema on the 3D facial surface are selected as keypoints in the difference scale space and the unstable keypoints are removed after two screening steps. Then, a local coordinate system for each keypoint is established by principal component analysis(PCA).Next, two local geometric features are extracted around each keypoint through the local coordinate system. Additionally, the features are augmented by the symmetrization according to the approximate left-right symmetry in human face. The proposed method is evaluated on the Bosphorus, BU-3DFE, and Gavab databases, respectively. Good results are achieved on these three datasets. As a result, the proposed method proves robust to facial expression variations, partial external occlusions and large pose changes.
基金supported by Taif University Researchers Supporting Project number(TURSP-2020/347),Taif University,Taif,Saudi Arabia.
文摘The probability of medical staff to get affected from COVID19 is much higher due to their working environment which is more exposed to infectious diseases.So,as a preventive measure the body temperature monitoring of medical staff at regular intervals is highly recommended.Infrared temperature sensing guns have proved its effectiveness and therefore such devices are used to monitor the body temperature.These devices are either used on hands or forehead.As a result,there are many issues in monitoring the temperature of frontline healthcare professionals.Firstly,these healthcare professionals keep wearing PPE(Personal Protective Equipment)kits during working hours and as a result it would be very difficult to monitor their body temperature.Secondly,these healthcare professionals also wear face shields and in such cases monitoring temperature by exposing forehead needs removal of face shield.Doing so after regular intervals is surely uncomfortable for healthcare professionals.To avoid such issues,this paper is disclosing a technologically advanced face shield equipped with sensors capable of monitoring body temperature instantly without the hassle of removing the face shield.This face shield is integrated with a built-in infrared temperature sensor.A total of 10 such face shields were printed and assembled within the university lab and then handed over to a group of ten members including faculty and students of nursing and health science department.This sequence was repeated four times and as a result 40 healthcare workers participated in the study.Thereafter,feedback analysis was conducted on questionnaire data and found a significant overall mean score of 4.59 out of 5 which indicates that the product is effective and worthy in every facet.Stress analysis is also performed in the simulated environment and found that the device can easily withstand the typically applied forces.The limitations of this product are difficulty in cleaning the product and comparatively high cost due to the deployment of electronic equipment.
文摘Background The accurate(quantitative)analysis of 3D face deformation is a problem of increasing interest in many applications.In particular,defining a 3D model of the face deformation into a 2D target image to capture local and asymmetric deformations remains a challenge in existing literature.A measure of such local deformations may be a relevant index for monitoring the rehabilitation exercises of patients suffering from Par-kinson’s or Alzheimer’s disease or those recovering from a stroke.Methods In this paper,a complete framework that allows the construction of a 3D morphable shape model(3DMM)of the face is presented for fitting to a target RGB image.The model has the specific characteristic of being based on localized components of deformation.The fitting transformation is performed from 3D to 2D and guided by the correspondence between landmarks detected in the target image and those manually annotated on the average 3DMM.The fitting also has the distinction of being performed in two steps to disentangle face deformations related to the identity of the target subject from those induced by facial actions.Results The method was experimentally validated using the MICC-3D dataset,which includes 11 subjects.Each subject was imaged in one neutral pose and while performing 18 facial actions that deform the face in localized and asymmetric ways.For each acquisition,3DMM was fit to an RGB frame whereby,from the apex facial action and the neutral frame,the extent of the deformation was computed.The results indicate that the proposed approach can accurately capture face deformation,even localized and asymmetric deformations.Conclusion The proposed framework demonstrated that it is possible to measure deformations of a reconstructed 3D face model to monitor facial actions performed in response to a set of targets.Interestingly,these results were obtained using only RGB targets,without the need for 3D scans captured with costly devices.This paves the way for the use of the proposed tool in remote medical rehabilitation monitoring.
文摘Coal working face is damaged more and more seriously by water below the coal face floor. Therefore, floor water detection is a must in the process of extraction. This article aims to introducing application and principle of the two-gateways parallel 3-D electrical technology and the arrangement of the observation system. The authors use this method to detect the water under the floor of a mine in north of Anhui. The results show that the two-gateways parallel 3-D electrical technology can accurately locate the water-rich areas, providing the basis for drilling drainage and grouting construction.
文摘In the current study, a numerical investigation of three-dimensional combined convection-radiation heat transfer over an inclined forward facing step (FFS) in a horizontal rectangular duct is presented. The fluid is treated as a gray, absorbing, emitting and scattering medium. To simulate the incline surface of FFS, the blocked-off method is employed in this study. The set of governing equations for gas flow are solved numerically using the CFD technique to obtain the temperature and velocity fields. Since the gas is considered as a radiating medium, all of the convection, conduction and radiation heat transfer mechanisms are presented in the energy equation. For computation of radiative term in energy equation, the radiative transfer equation (RTE) is solved numerically by the discrete ordinates method (DOM) to find the divergence of radiative heat flux distribution inside the radiating medium. The effects of optical thickness, radiation-conduction parameter and albedo coefficient on heat transfer behavior of the system are carried out.
基金supported by the National Key R&D Program of China(No.2018YFA0704000)the Beijing Natural Science Foundation(No.M22024)+2 种基金the National Natural Science Foundation of China(No.62021002)the Key Research and Development Project of Tibet Autonomous Region(No.XZ202101ZY0019G)supported by the Institute for Brain and Cognitive Sciences,BNRist,Tsinghua University,BLBCI,and Beijing Municipal Education Commission.
文摘As a popular kind of stylized face,cartoon faces have rich application scenarios.It is challenging to create personalized 3D cartoon faces directly from 2D real photos.Besides,in order to adapt to more application scenarios,automatic style editing,and animation of cartoon faces is also a crucial problem that is urgently needed to be solved in the industry,but has not yet had a perfect solution.To solve this problem,we first propose“3D face cartoonizer”,which can generate high-quality 3D cartoon faces with texture when fed into 2D facial images.We contribute the first 3D cartoon face hybrid dataset and a new training strategy which first pretrains our network with low-quality triplets in a reconstruction-then-generation manner,and then finetunes it with high-quality triplets in an adversarial manner to fully leverage the hybrid dataset.Besides,we implement style editing for 3D cartoon faces based on k-means,which can be easily achieved without retrain the neural network.In addition,we propose a new cartoon faces'blendshape generation method,and based on this,realize the expression animation of 3D cartoon faces,enabling more practical applications.Our dataset and code will be released for future research.
基金This work was supported by the National Natural Science Foundation of China under Grant Nos. 61702293, 61772294, and 61572078, the Open Research Fund of the Ministry of Education Engineering Research Center of Virtual Reality Application of China under Grant No. MEOBNUEVRA201601. It was also partially supported by the National High Technology Research and Development 863 Program of China under Grant No. 2015AA020506, and the National Science and Technology Pillar Program during the 12th Five-Year Plan Period of China under Grant No. 2013BAI01B03.
文摘3D face similarity is a critical issue in computer vision, computer graphics and face recognition and so on. Since Fr@chet distance is an effective metric for measuring curve similarity, a novel 3D face similarity measure method based on Fr^chet distances of geodesics is proposed in this paper. In our method, the surface similarity between two 3D faces is measured by the similarity between two sets of 3D curves on them. Due to the intrinsic property of geodesics, we select geodesics as the comparison curves. Firstly, the geodesics on each 3D facial model emanating from the nose tip point are extracted in the same initial direction with equal angular increment. Secondly, the Fr@chet distances between the two sets of geodesics on the two compared facial models are computed. At last, the similarity between the two facial models is computed based on the Fr6chet distances of the geodesics obtained in the second step. We verify our method both theoretically and practically. In theory, we prove that the similarity of our method satisfies three properties: reflexivity, symmetry, and triangle inequality. And in practice, experiments are conducted on the open 3D face database GavaDB, Texas 3D Face Recognition database, and our 3D face database. After the comparison with iso-geodesic and Hausdorff distance method, the results illustrate that our method has good discrimination ability and can not only identify the facial models of the same person, but also distinguish the facial models of any two different persons.
基金Project supported by the National Key Research and Development Program of China(Nos.2017YFB0802303and 2016YFC0801100)the National Key Scientific Instrument and Equipment Development Projects of China(No.2013YQ49087904)+1 种基金the National Natural Science Foundation of China(No.61773270)the Miaozi Key Project in Science and Technology Innovation Program of Sichuan Province,China(No.2017RZ0016)
文摘Cascaded regression has been recently applied to reconstruct 3D faces from single 2D images directly in shape space, and has achieved state-of-the-art performance. We investigate thoroughly such cascaded regression based 3D face reconstruction approaches from four perspectives that are not well been studied: (1) the impact of the number of 2D landmarks; (2) the impact of the number of 3D vertices; (3) the way of using standalone automated landmark detection methods; (4) the convergence property. To answer these questions, a simplified cascaded regression based 3D face reconstruction method is devised. This can be integrated with standalone automated landmark detection methods and reconstruct 3D face shapes that have the same pose and expression as the input face images, rather than normalized pose and expression. An effective training method is also proposed by disturbing the automatically detected landmarks. Comprehensive evaluation experiments have been carried out to compare to other 3D face reconstruction methods. The results not only deepen the understanding of cascaded regression based 3D face reconstruction approaches, but also prove the effectiveness of the proposed method.
文摘In the past ten years,research on face recognition has shifted to using 3D facial surfaces,as 3D geometric information provides more discriminative features.This comprehensive survey reviews 3D face recognition techniques developed in the past decade,both conventional methods and deep learning methods.These methods are evaluated with detailed descriptions of selected representative works.Their advantages and disadvantages are summarized in terms of accuracy,complexity,and robustness to facial variations(expression,pose,occlusion,etc.).A review of 3D face databases is also provided,and a discussion of future research challenges and directions of the topic.
基金The authors would like to acknowledge the use of the GavabDB face database in this paper due to Moreno and Sanchez.This work was supported in part by the National Natural Science Foundation of China(Grant No.60872145)the National High Technology Research and Development Program of China(No.2009AA01Z315)the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China(No.708085).
文摘A 3D face recognition approach which uses principal axes registration(PAR)and three face representation features from the re-sampling depth image:Eigenfaces,Fisherfaces and Zernike moments is presented.The approach addresses the issue of 3D face registration instantly achieved by PAR.Because each facial feature has its own advantages,limitations and scope of use,different features will complement each other.Thus the fusing features can learn more expressive characterizations than a single feature.The support vector machine(SVM)is applied for classification.In this method,based on the complementarity between different features,weighted decision-level fusion makes the recognition system have certain fault tolerance.Experimental results show that the proposed approach achieves superior performance with the rank-1 recognition rate of 98.36%for GavabDB database.
文摘In this paper, we present a new technique of 3D face reconstruction from a sequence of images taken with cameras having varying parameters without the need to grid. This method is based on the estimation of the projection matrices of the cameras from a symmetry property which characterizes the face, these projections matrices are used with points matching in each pair of images to determine the 3D points cloud, subsequently, 3D mesh of the face is constructed with 3D Crust algorithm. Lastly, the 2D image is projected on the 3D model to generate the texture mapping. The strong point of the proposed approach is to minimize the constraints of the calibration system: we calibrated the cameras from a symmetry property which characterizes the face, this property gives us the opportunity to know some points of 3D face in a specific well-chosen global reference, to formulate a system of linear and nonlinear equations according to these 3D points, their projection in the image plan and the elements of the projections matrix. Then to solve these equations, we use a genetic algorithm which consists of finding the global optimum without the need of the initial estimation and allows to avoid the local minima of the formulated cost function. Our study is conducted on real data to demonstrate the validity and the performance of the proposed approach in terms of robustness, simplicity, stability and convergence.