期刊文献+
共找到470篇文章
< 1 2 24 >
每页显示 20 50 100
Method of fabricating artificial rock specimens based on extrusion free forming(EFF)3D printing
1
作者 Xiaomeng Shi Tingbang Deng +2 位作者 Sen Lin Chunjiang Zou Baoguo Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1455-1466,共12页
Three-dimensional(3D)printing technology has been widely used to create artificial rock samples in rock mechanics.While 3D printing can create complex fractures,the material still lacks sufficient similarity to natura... Three-dimensional(3D)printing technology has been widely used to create artificial rock samples in rock mechanics.While 3D printing can create complex fractures,the material still lacks sufficient similarity to natural rock.Extrusion free forming(EFF)is a 3D printing technique that uses clay as the printing material and cures the specimens through high-temperature sintering.In this study,we attempted to use the EFF technology to fabricate artificial rock specimens.The results show the physico-mechanical properties of the specimens are significantly affected by the sintering temperature,while the nozzle diameter and layer thickness also have a certain impact.The specimens are primarily composed of SiO_(2),with mineral compositions similar to that of natural rocks.The density,uniaxial compressive strength(UCS),elastic modulus,and tensile strength of the printed specimens fall in the range of 1.65–2.54 g/cm3,16.46–50.49 MPa,2.17–13.35 GPa,and 0.82–17.18 MPa,respectively.It is capable of simulating different types of rocks,especially mudstone,sandstone,limestone,and gneiss.However,the simulation of hard rocks with UCS exceeding 50 MPa still requires validation. 展开更多
关键词 Artificial rock 3d printing Extrusion free forming(EFF) Similarity analysis Mechanical properties
下载PDF
3D printing in space:from mechanical structures to living tissues
2
作者 Mao Mao Zijie Meng +6 位作者 Xinxin Huang Hui Zhu Lei Wang Xiaoyong Tian Jiankang He Dichen Li Bingheng Lu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期378-387,共10页
3D printing stands at the forefront of transforming space exploration,offering unprecedented on-demand and rapid manufacturing capabilities.It adeptly addresses challenges such as mass reduction,intricate component fa... 3D printing stands at the forefront of transforming space exploration,offering unprecedented on-demand and rapid manufacturing capabilities.It adeptly addresses challenges such as mass reduction,intricate component fabrication,and resource constraints.Despite the obstacles posed by microgravity and extreme environments,continual advancements underscore the pivotal role of 3D printing in aerospace science.Beyond its primary function of producing space structures,3D printing contributes significantly to progress in electronics,biomedicine,and resource optimization.This perspective delves into the technological advantages,environmental challenges,development status,and opportunities of 3D printing in space.Envisioning its crucial impact,we anticipate that 3D printing will unlock innovative solutions,reshape manufacturing practices,and foster self-sufficiency in future space endeavors. 展开更多
关键词 3d printing in space space manufacturing MICROGRAVITY
下载PDF
Cookie Baking Process Optimization and Quality Analysis Based on Food 3D Printing
3
作者 Liu Chenghai Li Jingyi +2 位作者 Wu Chunsheng Zhao Xinglong Zheng Xianzhe 《Journal of Northeast Agricultural University(English Edition)》 CAS 2024年第1期61-73,共13页
In order to obtain better quality cookies, food 3D printing technology was employed to prepare cookies. The texture, color, deformation, moisture content, and temperature of the cookie as evaluation indicators, the in... In order to obtain better quality cookies, food 3D printing technology was employed to prepare cookies. The texture, color, deformation, moisture content, and temperature of the cookie as evaluation indicators, the influences of baking process parameters, such as baking time, surface heating temperature and bottom heating temperature, on the quality of the cookie were studied to optimize the baking process parameters. The results showed that the baking process parameters had obvious effects on the texture, color, deformation, moisture content, and temperature of the cookie. All of the roasting surface heating temperature, bottom heating temperature and baking time had positive influences on the hardness, crunchiness, crispiness, and the total color difference(ΔE) of the cookie. When the heating temperatures of the surfac and bottom increased, the diameter and thickness deformation rate of the cookie increased. However,with the extension of baking time, the diameter and thickness deformation rate of the cookie first increased and then decreased. With the surface heating temperature of 180 ℃, the bottom heating temperature of 150 ℃, and baking time of 15 min, the cookie was crisp and moderate with moderate deformation and uniform color. There was no burnt phenomenon with the desired quality. Research results provided a theoretical basis for cookie manufactory based on food 3D printing technology. 展开更多
关键词 food 3d printing baking process COOKIE quality analysis optimization of process parameter
下载PDF
Constructing a biofunctionalized 3D-printed gelatin/sodium alginate/chitosan tri-polymer complex scaffold with improvised biological andmechanical properties for bone-tissue engineering
4
作者 Amit Kumar Singh Krishna Pramanik Amit Biswas 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第1期57-73,共17页
Sodium alginate(SA)/chitosan(CH)polyelectrolyte scaffold is a suitable substrate for tissue-engineering application.The present study deals with further improvement in the tensile strength and biological properties of... Sodium alginate(SA)/chitosan(CH)polyelectrolyte scaffold is a suitable substrate for tissue-engineering application.The present study deals with further improvement in the tensile strength and biological properties of this type of scaffold to make it a potential template for bone-tissue regeneration.We experimented with adding 0%–15%(volume fraction)gelatin(GE),a protein-based biopolymer known to promote cell adhesion,proliferation,and differentiation.The resulting tri-polymer complex was used as bioink to fabricate SA/CH/GEmatrices by three-dimensional(3D)printing.Morphological studies using scanning electron microscopy revealed the microfibrous porous architecture of all the structures,which had a pore size range of 383–419μm.X-ray diffraction and Fourier-transform infrared spectroscopy analyses revealed the amorphous nature of the scaffold and the strong electrostatic interactions among the functional groups of the polymers,thereby forming polyelectrolyte complexes which were found to improve mechanical properties and structural stability.The scaffolds exhibited a desirable degradation rate,controlled swelling,and hydrophilic characteristics which are favorable for bone-tissue engineering.The tensile strength improved from(386±15)to(693±15)kPa due to the increased stiffness of SA/CH scaffolds upon addition of gelatin.The enhanced protein adsorption and in vitro bioactivity(forming an apatite layer)confirmed the ability of the SA/CH/GE scaffold to offer higher cellular adhesion and a bone-like environment to cells during the process of tissue regeneration.In vitro biological evaluation including the MTT assay,confocal microscopy analysis,and alizarin red S assay showed a significant increase in cell attachment,cell viability,and cell proliferation,which further improved biomineralization over the scaffold surface.In addition,SA/CH containing 15%gelatin designated as SA/CH/GE15 showed superior performance to the other fabricated 3D structures,demonstrating its potential for use in bone-tissue engineering. 展开更多
关键词 SCAFFOLd Biomaterial Sodium alginate CHITOSAN GELATIN 3d printing Tissue engineering
下载PDF
3D-printed Mg-1Ca/polycaprolactone composite scaffolds with promoted bone regeneration
5
作者 Xiao Zhao Siyi Wang +6 位作者 Feilong Wang Yuan Zhu Ranli Gu Fan Yang Yongxiang Xu Dandan Xia Yunsong Liu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期966-979,共14页
In bone tissue engineering,polycaprolactone(PCL)is a promising material with good biocompatibility,but its poor degradation rate,mechanical strength,and osteogenic properties limit its application.In this study,we dev... In bone tissue engineering,polycaprolactone(PCL)is a promising material with good biocompatibility,but its poor degradation rate,mechanical strength,and osteogenic properties limit its application.In this study,we developed an Mg-1Ca/polycaprolactone(Mg-1Ca/PCL)composite scaffolds to overcome these limitations.We used a melt blending method to prepare Mg-1Ca/PCL composites with Mg-1Ca alloy powder mass ratios of 5,10,and 20 wt%.Porous scaffolds with controlled macro-and microstructure were printed using the fused deposition modeling method.We explored the mechanical strength,biocompatibility,osteogenesis performance,and molecular mechanism of the Mg-1Ca/PCL composites.The 5 and 10 wt%Mg-1Ca/PCL composites were found to have good biocompatibility.Moreover,they promoted the mechanical strength,proliferation,adhesion,and osteogenic differentiation of human bone marrow stem cells(hBMSCs)of pure PCL.In vitro degradation experiments revealed that the composite material stably released Mg_(2)+ions for a long period;it formed an apatite layer on the surface of the scaffold that facilitated cell adhesion and growth.Microcomputed tomography and histological analysis showed that both 5 and 10 wt%Mg-1Ca/PCL composite scaffolds promoted bone regeneration bone defects.Our results indicated that the Wnt/β-catenin pathway was involved in the osteogenic effect.Therefore,Mg-1Ca/PCL composite scaffolds are expected to be a promising bone regeneration material for clinical application.Statement of significance:Bone tissue engineering scaffolds have promising applications in the regeneration of critical-sized bone defects.However,there remain many limitations in the materials and manufacturing methods used to fabricate scaffolds.This study shows that the developed Ma-1Ca/PCL composites provides scaffolds with suitable degradation rates and enhanced boneformation capabilities.Furthermore,the fused deposition modeling method allows precise control of the macroscopic morphology and microscopic porosity of the scaffold.The obtained porous scaffolds can significantly promote the regeneration of bone defects. 展开更多
关键词 3d printing Bone tissue engineering MAGNESIUM OSTEOGENIC POLYCAPROLACTONE Scaffold.
下载PDF
Challenges and Opportunities in Preserving Key Structural Features of 3D-Printed Metal/Covalent Organic Framework
6
作者 Ximeng Liu Dan Zhao John Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期362-381,共20页
Metal-organic framework(MOF)and covalent organic framework(COF)are a huge group of advanced porous materials exhibiting attractive and tunable microstructural features,such as large surface area,tunable pore size,and ... Metal-organic framework(MOF)and covalent organic framework(COF)are a huge group of advanced porous materials exhibiting attractive and tunable microstructural features,such as large surface area,tunable pore size,and functional surfaces,which have significant values in various application areas.The emerging 3D printing technology further provides MOF and COFs(M/COFs)with higher designability of their macrostructure and demonstrates large achievements in their performance by shaping them into advanced 3D monoliths.However,the currently available 3D printing M/COFs strategy faces a major challenge of severe destruction of M/COFs’microstructural features,both during and after 3D printing.It is envisioned that preserving the microstructure of M/COFs in the 3D-printed monolith will bring a great improvement to the related applications.In this overview,the 3D-printed M/COFs are categorized into M/COF-mixed monoliths and M/COF-covered monoliths.Their differences in the properties,applications,and current research states are discussed.The up-to-date advancements in paste/scaffold composition and printing/covering methods to preserve the superior M/COF microstructure during 3D printing are further discussed for the two types of 3D-printed M/COF.Throughout the analysis of the current states of 3D-printed M/COFs,the expected future research direction to achieve a highly preserved microstructure in the 3D monolith is proposed. 展开更多
关键词 Metal-organic frameworks Covalent organic frameworks 3d printing Microstructure MONOLITH
下载PDF
Isotropic sintering shrinkage of 3D glass-ceramic nanolattices:backbone preforming and mechanical enhancement
7
作者 Nianyao Chai Yunfan Yue +3 位作者 Xiangyu Chen Zhongle Zeng Sheng Li Xuewen Wang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期418-426,共9页
There is a perpetual pursuit for free-form glasses and ceramics featuring outstanding mechanical properties as well as chemical and thermal resistance.It is a promising idea to shape inorganic materials in three-dimen... There is a perpetual pursuit for free-form glasses and ceramics featuring outstanding mechanical properties as well as chemical and thermal resistance.It is a promising idea to shape inorganic materials in three-dimensional(3D)forms to reduce their weight while maintaining high mechanical properties.A popular strategy for the preparation of 3D inorganic materials is to mold the organic–inorganic hybrid photoresists into 3D micro-and nano-structures and remove the organic components by subsequent sintering.However,due to the discrete arrangement of inorganic components in the organic-inorganic hybrid photoresists,it remains a huge challenge to attain isotropic shrinkage during sintering.Herein,we demonstrate the isotropic sintering shrinkage by forming the consecutive–Si–O–Si–O–Zr–O–inorganic backbone in photoresists and fabricating 3D glass–ceramic nanolattices with enhanced mechanical properties.The femtosecond(fs)laser is used in two-photon polymerization(TPP)to fabricate 3D green body structures.After subsequent sintering at 1000℃,high-quality 3D glass–ceramic microstructures can be obtained with perfectly intact and smooth morphology.In-suit compression experiments and finite-element simulations reveal that octahedral-truss(oct-truss)lattices possess remarkable adeptness in bearing stress concentration and maintain the structural integrity to resist rod bending,indicating that this structure is a candidate for preparing lightweight and high stiffness glass–ceramic nanolattices.3D printing of such glasses and ceramics has significant implications in a number of industrial applications,including metamaterials,microelectromechanical systems,photonic crystals,and damage-tolerant lightweight materials. 展开更多
关键词 3d printing isotropic shrinkage femtosecond laser two-photon polymerization structural glass-ceramics
下载PDF
Engineering Nano/Microscale Chiral Self‑Assembly in 3D Printed Constructs
8
作者 Mohsen Esmaeili Ehsan Akbari +3 位作者 Kyle George Gelareh Rezvan Nader Taheri‑Qazvini Monirosadat Sadati 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期313-332,共20页
Helical hierarchy found in biomolecules like cellulose,chitin,and collagen underpins the remarkable mechanical strength and vibrant colors observed in living organisms.This study advances the integration of helical/ch... Helical hierarchy found in biomolecules like cellulose,chitin,and collagen underpins the remarkable mechanical strength and vibrant colors observed in living organisms.This study advances the integration of helical/chiral assembly and 3D printing technology,providing precise spatial control over chiral nano/microstructures of rod-shaped colloidal nanoparticles in intricate geometries.We designed reactive chiral inks based on cellulose nanocrystal(CNC)suspensions and acrylamide monomers,enabling the chiral assembly at nano/microscale,beyond the resolution seen in printed materials.We employed a range of complementary techniques including Orthogonal Superposition rheometry and in situ rheo-optic measurements under steady shear rate conditions.These techniques help us to understand the nature of the nonlinear flow behavior of the chiral inks,and directly probe the flow-induced microstructural dynamics and phase transitions at constant shear rates,as well as their post-flow relaxation.Furthermore,we analyzed the photo-curing process to identify key parameters affecting gelation kinetics and structural integrity of the printed object within the supporting bath.These insights into the interplay between the chiral inks self-assembly dynamics,3D printing flow kinematics and photopolymerization kinetics provide a roadmap to direct the out-of-equilibrium arrangement of CNC particles in the 3D printed filaments,ranging from uniform nematic to 3D concentric chiral structures with controlled pitch length,as well as random orientation of chiral domains.Our biomimetic approach can pave the way for the creation of materials with superior mechanical properties or programable photonic responses that arise from 3D nano/microstructure and can be translated into larger scale 3D printed designs. 展开更多
关键词 directed chiral self-assembly Cellulose nanocrystals Bioinspired nanocomposite 3d printing RHEOLOGY
下载PDF
Transfer film effects induced by 3D-printed polyether-ether-ketone with excellent tribological properties for joint prosthesis
9
作者 Yang Li Jibao Zheng +1 位作者 Changning Sun Dichen Li 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第1期43-56,共14页
Based on the building principle of additive manufacturing,printing orientation mainly determines the tribological properties of joint prostheses.In this study,we created a polyether-ether-ketone(PEEK)joint prosthesis ... Based on the building principle of additive manufacturing,printing orientation mainly determines the tribological properties of joint prostheses.In this study,we created a polyether-ether-ketone(PEEK)joint prosthesis using fused filament fabrication and investigated the effects of printing orientation on its tribological properties using a pin-on-plate tribometer in 25% newborn calf serum.An ultrahigh molecular weight polyethylene transfer film is formed on the surface of PEEK due to the mechanical capture of wear debris by the 3D-printed groove morphology,which is significantly impacted by the printing orientation of PEEK.When the printing orientation was parallel to the sliding direction of friction,the number and size of the transfer film increased due to higher steady stress.This transfer film protected the matrix and reduced the friction coefficient and wear rate of friction pairs by 39.13%and 74.33%,respectively.Furthermore,our findings provide a novel perspective regarding the role of printing orientation in designing knee prostheses,facilitating its practical applications. 展开更多
关键词 3d printing orientation Transfer film Tribological properties Polyether-ether-ketone Knee prosthesis
下载PDF
Acoustical properties of a 3D printed honeycomb structure filled with nanofillers:Experimental analysis and optimization for emerging applications
10
作者 Jeyanthi Subramanian Vinoth kumar Selvaraj +3 位作者 Rohan Singh Ilangovan S Naresh Kakur Ruban Whenish 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期248-258,共11页
The novelty of this research lies in the successful fabrication of a 3D-printed honeycomb structure filled with nanofillers for acoustic properties,utilizing an impedance tube setup in accordance with ASTM standard E ... The novelty of this research lies in the successful fabrication of a 3D-printed honeycomb structure filled with nanofillers for acoustic properties,utilizing an impedance tube setup in accordance with ASTM standard E 1050-12.The Creality Ender-3,a 3D printer,was used for printing the honeycomb structures,and polylactic acid(PLA)material was employed for their construction.The organic,inorganic,and polymeric compounds within the composites were identified using fourier transformation infrared(FTIR)spectroscopy.The structure and homogeneity of the samples were examined using a field emission scanning electron microscope(FESEM).To determine the sound absorption coefficient of the 3D printed honeycomb structure,numerous samples were systematically developed using central composite design(CCD)and analysed using response surface methodology(RSM).The RSM mathematical model was established to predict the optimum values of each factor and noise reduction coefficient(NRC).The optimum values for an NRC of 0.377 were found to be 1.116 wt% carbon black,1.025 wt% aluminium powder,and 3.151 mm distance between parallel edges.Overall,the results demonstrate that a 3Dprinted honeycomb structure filled with nanofillers is an excellent material that can be utilized in various fields,including defence and aviation,where lightweight and acoustic properties are of great importance. 展开更多
关键词 3d printing Honeycomb structure ACOUSTICS Field emission scanning electron microscope Response surface methodology
下载PDF
Advancing Wound Filling Extraction on 3D Faces:An Auto-Segmentation and Wound Face Regeneration Approach
11
作者 Duong Q.Nguyen Thinh D.Le +2 位作者 Phuong D.Nguyen Nga T.K.Le H.Nguyen-Xuan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期2197-2214,共18页
Facial wound segmentation plays a crucial role in preoperative planning and optimizing patient outcomes in various medical applications.In this paper,we propose an efficient approach for automating 3D facial wound seg... Facial wound segmentation plays a crucial role in preoperative planning and optimizing patient outcomes in various medical applications.In this paper,we propose an efficient approach for automating 3D facial wound segmentation using a two-stream graph convolutional network.Our method leverages the Cir3D-FaIR dataset and addresses the challenge of data imbalance through extensive experimentation with different loss functions.To achieve accurate segmentation,we conducted thorough experiments and selected a high-performing model from the trainedmodels.The selectedmodel demonstrates exceptional segmentation performance for complex 3D facial wounds.Furthermore,based on the segmentation model,we propose an improved approach for extracting 3D facial wound fillers and compare it to the results of the previous study.Our method achieved a remarkable accuracy of 0.9999993% on the test suite,surpassing the performance of the previous method.From this result,we use 3D printing technology to illustrate the shape of the wound filling.The outcomes of this study have significant implications for physicians involved in preoperative planning and intervention design.By automating facial wound segmentation and improving the accuracy ofwound-filling extraction,our approach can assist in carefully assessing and optimizing interventions,leading to enhanced patient outcomes.Additionally,it contributes to advancing facial reconstruction techniques by utilizing machine learning and 3D bioprinting for printing skin tissue implants.Our source code is available at https://github.com/SIMOGroup/WoundFilling3D. 展开更多
关键词 3d printing technology face reconstruction 3d segmentation 3d printed model
下载PDF
3D‑Printed Carbon‑Based Conformal Electromagnetic Interference Shielding Module for Integrated Electronics
12
作者 Shaohong Shi Yuheng Jiang +5 位作者 Hao Ren Siwen Deng Jianping Sun Fangchao Cheng Jingjing Jing Yinghong Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期87-101,共15页
Electromagnetic interference shielding(EMI SE)modules are the core com-ponent of modern electronics.However,the tra-ditional metal-based SE modules always take up indispensable three-dimensional space inside electroni... Electromagnetic interference shielding(EMI SE)modules are the core com-ponent of modern electronics.However,the tra-ditional metal-based SE modules always take up indispensable three-dimensional space inside electronics,posing a major obstacle to the integra-tion of electronics.The innovation of integrating 3D-printed conformal shielding(c-SE)modules with packaging materials onto core electronics offers infinite possibilities to satisfy ideal SE func-tion without occupying additional space.Herein,the 3D printable carbon-based inks with various proportions of graphene and carbon nanotube nanoparticles are well-formulated by manipulating their rheological peculiarity.Accordingly,the free-constructed architectures with arbitrarily-customized structure and multifunctionality are created via 3D printing.In particular,the SE performance of 3D-printed frame is up to 61.4 dB,simultaneously accompanied with an ultralight architecture of 0.076 g cm^(-3) and a superhigh specific shielding of 802.4 dB cm3 g^(-1).Moreover,as a proof-of-concept,the 3D-printed c-SE module is in situ integrated into core electronics,successfully replacing the traditional metal-based module to afford multiple functions for electromagnetic compatibility and thermal dissipa-tion.Thus,this scientific innovation completely makes up the blank for assembling carbon-based c-SE modules and sheds a brilliant light on developing the next generation of high-performance shielding materials with arbitrarily-customized structure for integrated electronics. 展开更多
关键词 3d printing Carbon-based nanoparticles Conformal electromagnetic interference shielding Integrated electronics
下载PDF
Local dose-dense chemotherapy for triple-negative breast cancer via minimally invasive implantation of 3D printed devices
13
作者 Noehyun Myung Hyun-Wook Kang 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2024年第1期69-85,共17页
Dose-dense chemotherapy is the preferred first-line therapy for triple-negative breast cancer(TNBC),a highly aggressive disease with a poor prognosis.This treatment uses the same drug doses as conventional chemotherap... Dose-dense chemotherapy is the preferred first-line therapy for triple-negative breast cancer(TNBC),a highly aggressive disease with a poor prognosis.This treatment uses the same drug doses as conventional chemotherapy but with shorter dosing intervals,allowing for promising clinical outcomes with intensive treatment.However,the frequent systemic administration used for this treatment results in systemic toxicity and low patient compliance,limiting therapeutic efficacy and clinical benefit.Here,we report local dose-dense chemotherapy to treat TNBC by implanting 3D printed devices with timeprogrammed pulsatile release profiles.The implantable device can control the time between drug releases based on its internal microstructure design,which can be used to control dose density.The device is made of biodegradable materials for clinical convenience and designed for minimally invasive implantation via a trocar.Dose density variation of local chemotherapy using programmable release enhances anti-cancer effects in vitro and in vivo.Under the same dose density conditions,device-based chemotherapy shows a higher anticancer effect and less toxic response than intratumoral injection.We demonstrate local chemotherapy utilizing the implantable device that simulates the drug dose,number of releases,and treatment duration of the dose-dense AC(doxorubicin and cyclophosphamide)regimen preferred for TNBC treatment.Dose density modulation inhibits tumor growth,metastasis,and the expression of drug resistance-related proteins,including p-glycoprotein and breast cancer resistance protein.To the best of our knowledge,local dose-dense chemotherapy has not been reported,and our strategy can be expected to be utilized as a novel alternative to conventional therapies and improve anti-cancer efficiency. 展开更多
关键词 dose-dense chemotherapy Triple-negative breast cancer 3d printing Pulsatile release Local drug delivery systems
下载PDF
Development and characterization of 3D-printed electroconductive pHEMA-co-MAA NP-laden hydrogels for tissue engineering
14
作者 Sara De Nitto Aleksandra Serafin +3 位作者 Alexandra Karadimou Achim Schmalenberger John J.EMulvihill Maurice N.Collins 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第3期262-276,共15页
Tissue engineering(TE)continues to be widely explored as a potential solution to meet critical clinical needs for diseased tissue replacement and tissue regeneration.In this study,we developed a poly(2-hydroxyethyl me... Tissue engineering(TE)continues to be widely explored as a potential solution to meet critical clinical needs for diseased tissue replacement and tissue regeneration.In this study,we developed a poly(2-hydroxyethyl methacrylate-co-methacrylic acid)(pHEMA-co-MAA)based hydrogel loaded with newly synthesized conductive poly(3,4-ethylene-dioxythiophene)(PEDOT)and polypyrrole(PPy)nanoparticles(NPs),and subsequently processed these hydrogels into tissue engineered constructs via three-dimensional(3D)printing.The presence of the NPs was critical as they altered the rheological properties during printing.However,all samples exhibited suitable shear thinning properties,allowing for the development of an optimized processing window for 3D printing.Samples were 3D printed into pre-determined disk-shaped configurations of 2 and 10 mm in height and diameter,respectively.We observed that the NPs disrupted the gel crosslinking efficiencies,leading to shorter degradation times and compressive mechanical properties ranging between 450 and 550 kPa.The conductivity of the printed hydrogels increased along with the NP concentration to(5.10±0.37)×10^(−7)S/cm.In vitro studies with cortical astrocyte cell cultures demonstrated that exposure to the pHEMA-co-MAA NP hydrogels yielded high cellular viability and proliferation rates.Finally,hydrogel antimicrobial studies with staphylococcus epidermidis bacteria revealed that the developed hydrogels affected bacterial growth.Taken together,these materials show promise for various TE strategies. 展开更多
关键词 Conductive nanoparticles Hydroxyethyl methacrylate(HEMA) Ultraviolet(UV)polymerization 3d printing
下载PDF
Numerical Study of the Biomechanical Behavior of a 3D Printed Polymer Esophageal Stent in the Esophagus by BP Neural Network Algorithm
15
作者 Guilin Wu Shenghua Huang +7 位作者 Tingting Liu Zhuoni Yang Yuesong Wu Guihong Wei Peng Yu Qilin Zhang Jun Feng Bo Zeng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2709-2725,共17页
Esophageal disease is a common disorder of the digestive system that can severely affect the quality of life andprognosis of patients. Esophageal stenting is an effective treatment that has been widely used in clinica... Esophageal disease is a common disorder of the digestive system that can severely affect the quality of life andprognosis of patients. Esophageal stenting is an effective treatment that has been widely used in clinical practice.However, esophageal stents of different types and parameters have varying adaptability and effectiveness forpatients, and they need to be individually selected according to the patient’s specific situation. The purposeof this study was to provide a reference for clinical doctors to choose suitable esophageal stents. We used 3Dprinting technology to fabricate esophageal stents with different ratios of thermoplastic polyurethane (TPU)/(Poly-ε-caprolactone) PCL polymer, and established an artificial neural network model that could predict the radial forceof esophageal stents based on the content of TPU, PCL and print parameter. We selected three optimal ratios formechanical performance tests and evaluated the biomechanical effects of different ratios of stents on esophagealimplantation, swallowing, and stent migration processes through finite element numerical simulation and in vitrosimulation tests. The results showed that different ratios of polymer stents had different mechanical properties,affecting the effectiveness of stent expansion treatment and the possibility of postoperative complications of stentimplantation. 展开更多
关键词 Finite element method 3d printing polymer esophageal stent artificial neural network
下载PDF
Application and prospects of 3D printing in physical experiments of rock mass mechanics and engineering:materials,methodologies and models 被引量:2
16
作者 Qingjia Niu Lishuai Jiang +3 位作者 Chunang Li Yang Zhao Qingbiao Wang Anying Yuan 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第1期1-17,共17页
The existence of joints or other kinds of discontinuities has a dramatic efect on the stability of rock excavations and engineering.As a result,a great challenge in rock mass mechanics testing is to prepare rock or ro... The existence of joints or other kinds of discontinuities has a dramatic efect on the stability of rock excavations and engineering.As a result,a great challenge in rock mass mechanics testing is to prepare rock or rock-like samples with defects.In recent years,3D printing technology has become a promising tool in the feld of rock mass mechanics and engineering.This study frst reviews and discusses the research status of traditional test methods in rock mass mechanics tests of making rock samples with defects.Then,based on the comprehensive analysis of previous research,the application of 3D printing technology in rock mass mechanics is expounded from the following three aspects.The frst is the printing material.Although there are many materials for 3D printing,it has been found that 3D printing materials that can be used for rock mass mechanics research are very limited.After research,we summarize and evaluate printing material that can be used for rock mass mechanics studies.The second is the printing methodology,which mainly introduces the current application forms of 3D printing technology in rock mass mechanics.This includes printed precise casting molds and one-time printed samples.The last one is the printing model,which includes small-scale samples for mechanical tests and large-scale physical models.Then,the benefts and drawbacks of using 3D printing samples in mechanical tests and the validity of their simulation of real rock are discussed.Compared with traditional rock samples collected in nature or synthetic rock-like samples,the samples made by 3D printing technology have unique advantages,such as higher test repeatability,visualization of rock internal structure and stress distribution.There is thus great potential for the use of 3D printing in the feld of rock mass mechanics.However,3D printing materials also have shortcomings,such as insufcient material strength and accuracy at this stage.Finally,the application prospect of 3D printing technology in rock mass mechanics research is proposed. 展开更多
关键词 3d printing Rock mass mechanics Prefabricated cracks Rock-like material Fractured rock mass
下载PDF
Effect of surface retaining elements on rock stability:laboratory investigation with sand powder 3D printing
17
作者 Hao Feng Lishuai Jiang +3 位作者 Qingwei Wang Peng Tang Atsushi Sainoki Hani S.Mitri 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第4期305-324,共20页
This study aims to investigate the benefcial efects of surface retaining elements (SREs) on the mechanical behaviors of bolted rock and roadway stability. 3D printing (3DP) technology is utilized to create rock analog... This study aims to investigate the benefcial efects of surface retaining elements (SREs) on the mechanical behaviors of bolted rock and roadway stability. 3D printing (3DP) technology is utilized to create rock analogue prismatic specimens for conducting this investigation. Uniaxial compression tests with acoustic emission (AE) and digital image correlation techniques have been conducted on 3DP specimens bolted with diferent SREs. The results demonstrate that the strength and modulus of elasticity of the bolted specimens show a positive correlation with the area of the SRE;the AE characteristics of the bolted specimens are higher than those of the unbolted specimen, but they decrease with an increase in SRE area, thus further improving the integrity of the bolted specimens. The reinforcement efect of SREs on the surrounding rock of roadways is further analyzed using numerical modelling and feld test. The results provide a better understanding of the role of SREs in rock bolting and the optimization of rock bolting design. Furthermore, they verify the feasibility of 3DP for rock analogues in rock mechanics tests. 展开更多
关键词 Roadway stability Surface retaining element Sand-powder 3d printing Rock bolting Numerical modelling
下载PDF
A Generalized Polymer Precursor Ink Design for 3D Printing of Functional Metal Oxides
18
作者 Hehao Chen Jizhe Wang +7 位作者 Siying Peng Dongna Liu Wei Yan Xinggang Shang Boyu Zhang Yuan Yao Yue Hui Nanjia Zhou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期433-448,共16页
Three-dimensional-structured metal oxides have myriad applications for optoelectronic devices.Comparing to conventional lithography-based manufacturing methods which face significant challenges for 3D device architect... Three-dimensional-structured metal oxides have myriad applications for optoelectronic devices.Comparing to conventional lithography-based manufacturing methods which face significant challenges for 3D device architectures,additive manufacturing approaches such as direct ink writing offer convenient,on-demand manufacturing of 3D oxides with high resolutions down to sub-micrometer scales.However,the lack of a universal ink design strategy greatly limits the choices of printable oxides.Here,a universal,facile synthetic strategy is developed for direct ink writable polymer precursor inks based on metal-polymer coordination effect.Specifically,polyethyleneimine functionalized by ethylenediaminetetraacetic acid is employed as the polymer matrix for adsorbing targeted metal ions.Next,glucose is introduced as a crosslinker for endowing the polymer precursor inks with a thermosetting property required for 3D printing via the Maillard reaction.For demonstrations,binary(i.e.,ZnO,CuO,In_(2)O_(3),Ga_(2)O_(3),TiO_(2),and Y_(2)O_(3)) and ternary metal oxides(i.e.,BaTiO_(3) and SrTiO_(3)) are printed into 3D architectures with sub-micrometer resolution by extruding the inks through ultrafine nozzles.Upon thermal crosslinking and pyrolysis,the 3D microarchitectures with woodpile geometries exhibit strong light-matter coupling in the mid-infrared region.The design strategy for printable inks opens a new pathway toward 3D-printed optoelectronic devices based on functional oxides. 展开更多
关键词 3d printing Maillard reaction Polymer-assisted deposition Metal oxide Photonic crystal
下载PDF
3D printing critical materials for rechargeable batteries: from materials, design and optimization strategies to applications
19
作者 Yongbiao Mu Youqi Chu +6 位作者 Lyuming Pan Buke Wu Lingfeng Zou Jiafeng He Meisheng Han Tianshou Zhao Lin Zeng 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第4期215-245,共31页
Three-dimensional(3D)printing,an additive manufacturing technique,is widely employed for the fabrication of various electrochemical energy storage devices(EESDs),such as batteries and supercapacitors,ranging from nano... Three-dimensional(3D)printing,an additive manufacturing technique,is widely employed for the fabrication of various electrochemical energy storage devices(EESDs),such as batteries and supercapacitors,ranging from nanoscale to macroscale.This technique offers excellent manufacturing flexibility,geometric designability,cost-effectiveness,and eco-friendliness.Recent studies have focused on the utilization of 3D-printed critical materials for EESDs,which have demonstrated remarkable electrochemical performances,including high energy densities and rate capabilities,attributed to improved ion/electron transport abilities and fast kinetics.However,there is a lack of comprehensive reviews summarizing and discussing the recent advancements in the structural design and application of 3D-printed critical materials for EESDs,particularly rechargeable batteries.In this review,we primarily concentrate on the current progress in 3D printing(3DP)critical materials for emerging batteries.We commence by outlining the key characteristics of major 3DP methods employed for fabricating EESDs,encompassing design principles,materials selection,and optimization strategies.Subsequently,we summarize the recent advancements in 3D-printed critical materials(anode,cathode,electrolyte,separator,and current collector)for secondary batteries,including conventional Li-ion(LIBs),Na-ion(SIBs),K-ion(KIBs)batteries,as well as Li/Na/K/Zn metal batteries,Zn-air batteries,and Ni–Fe batteries.Within these sections,we discuss the 3DP precursor,design principles of 3D structures,and working mechanisms of the electrodes.Finally,we address the major challenges and potential applications in the development of 3D-printed critical materials for rechargeable batteries. 展开更多
关键词 additive manufacturing 3d printing rechargeable batteries electrochemical energy storage devices lithium-ion battery
下载PDF
Anisotropic creep behavior of soft-hard interbedded rock masses based on 3D printing and digital imaging correlation technology
20
作者 TIAN Yun WU Fa-quan +5 位作者 TIAN Hong-ming LI Zhe SHU Xiao-yun HE Lin-kai HUANG Man CHEN Wei-zhong 《Journal of Mountain Science》 SCIE CSCD 2023年第4期1147-1158,共12页
Three-dimensional(3D)printing technology is increasingly used in experimental research of geotechnical engineering.Compared to other materials,3D layer-by-layer printing specimens are extremely similar to the inherent... Three-dimensional(3D)printing technology is increasingly used in experimental research of geotechnical engineering.Compared to other materials,3D layer-by-layer printing specimens are extremely similar to the inherent properties of natural layered rock masses.In this paper,soft-hard interbedded rock masses with different dip angles were prepared based on 3D printing(3DP)sand core technology.Uniaxial compression creep tests were conducted to investigate its anisotropic creep behavior based on digital imaging correlation(DIC)technology.The results show that the anisotropic creep behavior of the 3DP soft-hard interbedded rock mass is mainly affected by the dip angles of the weak interlayer when the stress is at low levels.As the stress level increases,the effect of creep stress on its creep anisotropy increases significantly,and the dip angle is no longer the main factor.The minimum value of the long-term strength and creep failure strength always appears in the weak interlayer within 30°–60°,which explains why the failure of the layered rock mass is controlled by the weak interlayer and generally emerges at 45°.The tests results are verified by comparing with theoretical and other published studies.The feasibility of the 3DP soft-hard interbedded rock mass provides broad prospects and application values for 3DP technology in future experimental research. 展开更多
关键词 3d printing Soft-hard interbedded rock mass digital imaging correlation technology Weak interlayer Anisotropic creep
下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部