To solve the problems in restoring sedimentary facies and predicting reservoirs in loose gas-bearing sediment,based on seismic sedimentologic analysis of the first 9-component S-wave 3D seismic dataset of China,a four...To solve the problems in restoring sedimentary facies and predicting reservoirs in loose gas-bearing sediment,based on seismic sedimentologic analysis of the first 9-component S-wave 3D seismic dataset of China,a fourth-order isochronous stratigraphic framework was set up and then sedimentary facies and reservoirs in the Pleistocene Qigequan Formation in Taidong area of Qaidam Basin were studied by seismic geomorphology and seismic lithology.The study method and thought are as following.Firstly,techniques of phase rotation,frequency decomposition and fusion,and stratal slicing were applied to the 9-component S-wave seismic data to restore sedimentary facies of major marker beds based on sedimentary models reflected by satellite images.Then,techniques of seismic attribute extraction,principal component analysis,and random fitting were applied to calculate the reservoir thickness and physical parameters of a key sandbody,and the results are satisfactory and confirmed by blind testing wells.Study results reveal that the dominant sedimentary facies in the Qigequan Formation within the study area are delta front and shallow lake.The RGB fused slices indicate that there are two cycles with three sets of underwater distributary channel systems in one period.Among them,sandstones in the distributary channels of middle-low Qigequan Formation are thick and broad with superior physical properties,which are favorable reservoirs.The reservoir permeability is also affected by diagenesis.Distributary channel sandstone reservoirs extend further to the west of Sebei-1 gas field,which provides a basis to expand exploration to the western peripheral area.展开更多
The development of unconventional resources, such as shale gas and tight sane gas, requires the integration of multi-disciplinary knowledge to resolve many engineering problems in order to achieve economic production ...The development of unconventional resources, such as shale gas and tight sane gas, requires the integration of multi-disciplinary knowledge to resolve many engineering problems in order to achieve economic production levels. The reservoir heterogeneit3 revealed by different data sets, such as 3D seismic and microseismic data, can more full3 reflect the reservoir properties and is helpful to optimize the drilling and completioT programs. First, we predict the local stress direction and open or close status of the natura fractures in tight sand reservoirs based on seismic curvature, an attribute that reveals reservoi heterogeneity and geomechanical properties. Meanwhile, the reservoir fracture network is predicted using an ant-tracking cube and the potential fracture barriers which can affec hydraulic fracture propagation are predicted by integrating the seismic curvature attribute anc ant-tracking cube. Second, we use this information, derived from 3D seismic data, to assis in designing the fracture program and adjusting stimulation parameters. Finally, we interpre the reason why sand plugs will occur during the stimulation process by the integration of 3E seismic interpretation and microseismic imaging results, which further explain the hydraulic fracure propagation controlling factors and open or closed state of natural fractures in tigh sand reservoirs.展开更多
Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migra...Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migration and gas hydrates distribution in tectonically inactive regions is still unclear.In this study,the authors apply high-resolution 3D seismic and logging while drilling(LWD)data from the middle of the QDNB to investigate the influence of deep-large faults on gas chimneys and preferred gasescape pipes.The findings reveal the following:(1)Two significant deep-large faults,F1 and F2,developed on the edge of the Songnan Low Uplift,control the dominant migration of thermogenic hydrocarbons and determine the initial locations of gas chimneys.(2)The formation of gas chimneys is likely related to fault activation and reactivation.Gas chimney 1 is primarily arises from convergent fluid migration resulting from the intersection of the two faults,while the gas chimney 2 benefits from a steeper fault plane and shorter migration distance of fault F2.(3)Most gas-escape pipes are situated near the apex of the two faults.Their reactivations facilitate free gas flow into the GHSZ and contribute to the formation of fracture‐filling hydrates.展开更多
This paper presents a new approach for attenuating coherent noise in 3D seismic data. An adaptive beamforming with generalized sidelobe canceller (GSC) design methodology is utilized here as a general form of linearly...This paper presents a new approach for attenuating coherent noise in 3D seismic data. An adaptive beamforming with generalized sidelobe canceller (GSC) design methodology is utilized here as a general form of linearly constrained adaptive beamforming structure. It consists of a fixed beamformer, and a signal-blocking matrix in front of an unconstrained adaptive beamformer.Considerationf of the complexity of the geometry for 3D seismic survey, the 3D beamforming with GSC technique is developed with two key points: (1) sorting along azimuth sections to simplify the relationship between traveltime and offset from 3D to 2D, and (2) dynamic binning scheme to avoid the possible poor folding in some azimuth sections. Both simulation result and real data example show that the newly developed 3D beamforming with GSC yields more credible results at a relative low cost, sufficient stability and good resolution.展开更多
Multi-stages volcanic are available in HX area, shielding the seismic waves. Previous seismic acquisitions of large size bin, less fold coverage and narrow azimuth result in indistinct fault images, low S/N ratio and ...Multi-stages volcanic are available in HX area, shielding the seismic waves. Previous seismic acquisitions of large size bin, less fold coverage and narrow azimuth result in indistinct fault images, low S/N ratio and the difficulty of multi-stages volcanic characterization. In reference to the successful experience of domestic and overseas volcanic exploration, the low frequency excitation and receiving, and survey with wide range, high coverage, wide azimuth should be paid more attention, associated with two-dimensional and three-dimensional wave equation forward modeling and real data processing contrast analysis method. The image of underlying strata and fault are remarkably improved in the new method, according to the processing results of new seismic data. The new method will provide technical reference for the similar volcanic development area in the future seismic acquisition design.展开更多
The distribution of sedimentary microfacies in the eighth member of the Shihezi formation(the H8 member) in the Sul4 3D seismic test area was investigated.A Support Vector Machine(SVM) model was introduced for the...The distribution of sedimentary microfacies in the eighth member of the Shihezi formation(the H8 member) in the Sul4 3D seismic test area was investigated.A Support Vector Machine(SVM) model was introduced for the first time as a way of predicting sandstone thickness in the study area.The model was constructed by analysis and optimization of measured seismic attributes.The distribution of the sedimentary microfacies in the study area was determined from predicted sandstone thickness and an analysis of sedimentary characteristics of the area.The results indicate that sandstone thickness predictions in the study area using an SVM method are good.The distribution of the sedimentary microfacies in the study area has been depicted at a fine scale.展开更多
Seismic inversion is one of the most important methods for lithological prospecting . Seismic data with lowresolution is converted into impedance data of high resolution which can reflect the geological structure by i...Seismic inversion is one of the most important methods for lithological prospecting . Seismic data with lowresolution is converted into impedance data of high resolution which can reflect the geological structure by inversionThe inversion technique of 3D seismic data is discussed from both methodological and theoretical aspects, and the in-version test is also carried out using actual logging data. The result is identical with the measured data obtained fromroadway of coal mine. The field tests and research results indicate that this method can provide more accurate data foridentifying thin coal seam and minor faults.展开更多
3D seismic prospecting in mining areas of Xieqiao Colliery is a successfulmodel for an advancement from the resource prospecting to mining prospecting stagein coal fields. Its results have proved that faults with a th...3D seismic prospecting in mining areas of Xieqiao Colliery is a successfulmodel for an advancement from the resource prospecting to mining prospecting stagein coal fields. Its results have proved that faults with a throw of 5-10 m can be detected in an area with good seismogeologic conditions by using 3D seismic technique.Detection of underground tunnels for the first time utilizing 3D seismic data indicates that subsided columns, gotten and mine goaf can be detected using 3D seismic technique, so it has a broad applied prospect.展开更多
The study aims to identify Albian-age oil prospects in Block A of the San Pedro margin, Côte d’Ivoire, by conducting a detailed geological interpretation. The objective is to confirm the presence of oil reservoi...The study aims to identify Albian-age oil prospects in Block A of the San Pedro margin, Côte d’Ivoire, by conducting a detailed geological interpretation. The objective is to confirm the presence of oil reservoirs trapped by favorable geological structures, identifiable through geophysical and seismic methods. The methodological approach is based on a combined analysis of studies and seismic data. Drilling data from well PA, including well logs and end-of-well reports, were used to characterize the lithological formations encountered, particularly those of the Albian. 3D seismic profiles were interpreted to identify structures conducive to hydrocarbon accumulation. Isochrone, isovelocity, and isobath maps were developed to refine the interpretation. Sedimentological analyses revealed five sandy/gritty levels between 2610 m and 3100 m, interspersed with clay, limestone, and siltstone beds. The seismic profiles highlighted two main prospects. These prospects exhibit favorable geological structures, including normal faults and structural traps that provide oil traps.展开更多
3D visualization technology is a tool used for displaying, describing, and understanding the characteristics of geologic bodies, and features high efficiency, objective accuracy, visual expression, etc. In this paper,...3D visualization technology is a tool used for displaying, describing, and understanding the characteristics of geologic bodies, and features high efficiency, objective accuracy, visual expression, etc. In this paper, the man-machine interactive interpretation and 3D visualization technology rapidly displaying and analyzing the 3D seismic data of hydrate ore volume is researched and developed using the hybrid rendering technique. Through the integrated interpretation on the 3D space structure, stratum, and seismic attributes, the visualized multi-attribute superimposition analysis is implemented for describing the spatial distribution characteristics of hydrate ore volume and exquisitely describing the subtle geological characteristics of hydrate ore volume. By the hybrid rendering technique, authentication and interpretation are provided for the geological exploration work, so as to greatly enhance the visualization and accuracy of the geological analysis, and also provide a good decision-making foundation for the subsequent development of resources.展开更多
The production capacity and efficiency for mechanized coal faces of large-scale mines depend on the detecting degree of mining structures. It is a major task for geological exploration in coal fields to detect minor s...The production capacity and efficiency for mechanized coal faces of large-scale mines depend on the detecting degree of mining structures. It is a major task for geological exploration in coal fields to detect minor structures in district. 3D high resolution seismic prospecting is a effective measure for solving this problem.展开更多
The magma system of Changbaishan-Tianchi Volcanic region is studied with three-dimensional deep seismic sounding (DSS) technique. The results show that the magma system of Changbaishan-Tianchi volcanic region, mainly ...The magma system of Changbaishan-Tianchi Volcanic region is studied with three-dimensional deep seismic sounding (DSS) technique. The results show that the magma system of Changbaishan-Tianchi volcanic region, mainly characterized by low velocity of P wave, can be divided into three parts in terms of depth. At the depth range of 9-15 km, the distribution of the magma system is characterized by extensiveness, large scale and near-SN orientation. This layer is the major place for magma storage. From the depth of 15 km down to the lower crust, it is characterized by small lateral scale, which indicates the 'trace' of magma intrusion from the upper mantle into the crust and also implies that the magma system most probably extends to the upper mantle, or even deeper.(less than 8-9 km deep), the range of magma distribution is even smaller, centering on an SN-oriented area just north of the Tianchi crater. If low velocity of P wave is related to the magma system, it then reflects that the magma here is still in a state of relatively high temperature. In this sense, the magma system of Changbaishan-Tianchi volcanic region is at least not 'remains', in other words, it is in an 'active' state.展开更多
The Fushan Depression is a half-graben rifted sub-basin located in the southeast of the Beibuwan Basin, South China Sea. The Paleogene Liushagang sequence is the main hydrocarbon-bearing stratigraphic unit in the sub-...The Fushan Depression is a half-graben rifted sub-basin located in the southeast of the Beibuwan Basin, South China Sea. The Paleogene Liushagang sequence is the main hydrocarbon-bearing stratigraphic unit in the sub-basin. Using three-dimensional(3-D)seismic data and logging data over the sub-basin, we analyzed structural styles and sedimentary characteristics of the Liushagang sequence. Five types of structural styles were defined: ancient horst, traditional slope, flexure slope-break, faulted slope-break and multiple-stage faults slope, and interpretations for positions, background and development formations of each structural style were discussed. Structural framework across the sub-basin reveals that the most remarkable tectonic setting is represented by the central transfer zone(CTZ) which divides the sub-basin into two independent depressions, and two kinds of sequence architectures are summarized:(i) the western multi-stage faults slope;(ii) the eastern flexure slope break belt. Combined with regional stress field of the Fushan Depression, we got plane combinations of the faults, and finally built up plan distribution maps of structural system for main sequence. Also, we discussed the controlling factors mainly focused on subsidence history and background tectonic activities such as volcanic activity and earthquakes. The analysis of structural styles and tectonic evolution provides strong theoretical support for future prospecting in the Fushan subbasin and other similar rifted basins of the Beibuwan Basin in South China Sea.展开更多
Based on the first arrival P and S data of 4 625 regional earthquakes recorded at 174 stations dispersed in the Yunnan and Sichuan Provinces, the 3-D velocity structure of crust and upper mantle in the region is deter...Based on the first arrival P and S data of 4 625 regional earthquakes recorded at 174 stations dispersed in the Yunnan and Sichuan Provinces, the 3-D velocity structure of crust and upper mantle in the region is determined, incorporating with previous deep geophysical data. In the upper crust, a positive anomaly velocity zone exists in the Sichuan basin, whereas a negative anomaly velocity zone exists in the western Sichuan plateau. The boundary between the positive and negative anomaly zones is the Longmenshan fault zone. The images of lower crust and upper mantle in the Longmenshan fault, Xianshuihe fault, Honghe fault and others show the characteristic of tectonic boundary, indicating that the faults likely penetrate the Moho discontinuity. The negative velocity anomalies at the depth of 50 km in the Tengchong volcanic area and the Panxi tectonic zone appear to be associated with the temperature and composition variations in the upper mantle. The overall features of the crustal and the upper mantle structures in the SichuanYunnan region are the lower average velocity in both crust and uppermost mantle, the large crustal thickness variations, and the existence of high conductivity layer in the crust or/and upper mantle, and higher geothermal value. All these features are closely related to the collision between the India and the Asia plates. The crustal velocity in the SichuanYunnan rhombic block generally shows normal value or positive anomaly, while the negative anomaly exists in the area along the large strike-slip faults as the block boundary. It is conducive to the crustal block side-pressing out along the faults. In the major seismic zones, the seismicity is relative to the negative anomaly velocity. Most strong earthquakes occurred in the upper-mid crust with positive anomaly or normal velocity, where the negative anomaly zone generally exists below.展开更多
Lower Cretaceous Shurijeh–Shatlyk Formations host some of the main reservoirs in the Kopeh Dagh-Amu Darya Basin.Exploration in this area so far has focused on the development of structural traps, but recognition of s...Lower Cretaceous Shurijeh–Shatlyk Formations host some of the main reservoirs in the Kopeh Dagh-Amu Darya Basin.Exploration in this area so far has focused on the development of structural traps, but recognition of stratigraphic traps in this area is of increasing importance. Integration of 3D seismic data with borehole data from thirteen wells and five outcrop sections was used to identify potential reservoir intervals and survey the hydrocarbon trap types in the East Kopeh Dagh Foldbelt(NE Iran). Analyses of horizontal slices indicated that the lower Shurijeh was deposited in a braided fluvial system.Generally, three types of channel were identified in the lower Shurijeh Formation: type 1, which is low-sinuosity channels interpreted to be filled with non-reservoir fine-grained facies;type 2, which is a moderately sinuous sand-filled channel with good prospectively;and type 3, which is narrow, high sinuosity channel filled with fine-grained sediments. Results indicate that upper Shurijeh–Shatlyk Formations were deposited in fluvial to delta and shallow marine environments. The identified delta forms the second reservoir zone in the Khangiran Field. Study of the stratigraphic aspects of the Shurijeh succession indicates that both lower and upper Shurijeh reservoirs are stratigraphic reservoir traps that improved during folding.展开更多
基金Supported by the CNPC Science and Technology Projects(2022-N/G-47808,2023-N/G-67014)RIPED International Cooperation Project(19HTY5000008).
文摘To solve the problems in restoring sedimentary facies and predicting reservoirs in loose gas-bearing sediment,based on seismic sedimentologic analysis of the first 9-component S-wave 3D seismic dataset of China,a fourth-order isochronous stratigraphic framework was set up and then sedimentary facies and reservoirs in the Pleistocene Qigequan Formation in Taidong area of Qaidam Basin were studied by seismic geomorphology and seismic lithology.The study method and thought are as following.Firstly,techniques of phase rotation,frequency decomposition and fusion,and stratal slicing were applied to the 9-component S-wave seismic data to restore sedimentary facies of major marker beds based on sedimentary models reflected by satellite images.Then,techniques of seismic attribute extraction,principal component analysis,and random fitting were applied to calculate the reservoir thickness and physical parameters of a key sandbody,and the results are satisfactory and confirmed by blind testing wells.Study results reveal that the dominant sedimentary facies in the Qigequan Formation within the study area are delta front and shallow lake.The RGB fused slices indicate that there are two cycles with three sets of underwater distributary channel systems in one period.Among them,sandstones in the distributary channels of middle-low Qigequan Formation are thick and broad with superior physical properties,which are favorable reservoirs.The reservoir permeability is also affected by diagenesis.Distributary channel sandstone reservoirs extend further to the west of Sebei-1 gas field,which provides a basis to expand exploration to the western peripheral area.
文摘The development of unconventional resources, such as shale gas and tight sane gas, requires the integration of multi-disciplinary knowledge to resolve many engineering problems in order to achieve economic production levels. The reservoir heterogeneit3 revealed by different data sets, such as 3D seismic and microseismic data, can more full3 reflect the reservoir properties and is helpful to optimize the drilling and completioT programs. First, we predict the local stress direction and open or close status of the natura fractures in tight sand reservoirs based on seismic curvature, an attribute that reveals reservoi heterogeneity and geomechanical properties. Meanwhile, the reservoir fracture network is predicted using an ant-tracking cube and the potential fracture barriers which can affec hydraulic fracture propagation are predicted by integrating the seismic curvature attribute anc ant-tracking cube. Second, we use this information, derived from 3D seismic data, to assis in designing the fracture program and adjusting stimulation parameters. Finally, we interpre the reason why sand plugs will occur during the stimulation process by the integration of 3E seismic interpretation and microseismic imaging results, which further explain the hydraulic fracure propagation controlling factors and open or closed state of natural fractures in tigh sand reservoirs.
基金supported by the National Natural Science Foundation of China(42376221,42276083)Director Research Fund Project of Guangzhou Marine Geological Survey(2023GMGSJZJJ00030)+2 种基金National Key Research and Development Program of China(2021YFC2800901)Guangdong Major Project of Basic and Applied Basic Research(2020B030103003)the project of the China Geological Survey(DD20230064).
文摘Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migration and gas hydrates distribution in tectonically inactive regions is still unclear.In this study,the authors apply high-resolution 3D seismic and logging while drilling(LWD)data from the middle of the QDNB to investigate the influence of deep-large faults on gas chimneys and preferred gasescape pipes.The findings reveal the following:(1)Two significant deep-large faults,F1 and F2,developed on the edge of the Songnan Low Uplift,control the dominant migration of thermogenic hydrocarbons and determine the initial locations of gas chimneys.(2)The formation of gas chimneys is likely related to fault activation and reactivation.Gas chimney 1 is primarily arises from convergent fluid migration resulting from the intersection of the two faults,while the gas chimney 2 benefits from a steeper fault plane and shorter migration distance of fault F2.(3)Most gas-escape pipes are situated near the apex of the two faults.Their reactivations facilitate free gas flow into the GHSZ and contribute to the formation of fracture‐filling hydrates.
基金This research is sponsored by by China Natural Science Foundation (40274041), China National Petroleum Corporation (CNPC)Innovation Fund (2002CXKF-3)
文摘This paper presents a new approach for attenuating coherent noise in 3D seismic data. An adaptive beamforming with generalized sidelobe canceller (GSC) design methodology is utilized here as a general form of linearly constrained adaptive beamforming structure. It consists of a fixed beamformer, and a signal-blocking matrix in front of an unconstrained adaptive beamformer.Considerationf of the complexity of the geometry for 3D seismic survey, the 3D beamforming with GSC technique is developed with two key points: (1) sorting along azimuth sections to simplify the relationship between traveltime and offset from 3D to 2D, and (2) dynamic binning scheme to avoid the possible poor folding in some azimuth sections. Both simulation result and real data example show that the newly developed 3D beamforming with GSC yields more credible results at a relative low cost, sufficient stability and good resolution.
文摘Multi-stages volcanic are available in HX area, shielding the seismic waves. Previous seismic acquisitions of large size bin, less fold coverage and narrow azimuth result in indistinct fault images, low S/N ratio and the difficulty of multi-stages volcanic characterization. In reference to the successful experience of domestic and overseas volcanic exploration, the low frequency excitation and receiving, and survey with wide range, high coverage, wide azimuth should be paid more attention, associated with two-dimensional and three-dimensional wave equation forward modeling and real data processing contrast analysis method. The image of underlying strata and fault are remarkably improved in the new method, according to the processing results of new seismic data. The new method will provide technical reference for the similar volcanic development area in the future seismic acquisition design.
基金Financial support for this work,provided by the Major National Science and Technology Special Projects(No.2008ZX05008)
文摘The distribution of sedimentary microfacies in the eighth member of the Shihezi formation(the H8 member) in the Sul4 3D seismic test area was investigated.A Support Vector Machine(SVM) model was introduced for the first time as a way of predicting sandstone thickness in the study area.The model was constructed by analysis and optimization of measured seismic attributes.The distribution of the sedimentary microfacies in the study area was determined from predicted sandstone thickness and an analysis of sedimentary characteristics of the area.The results indicate that sandstone thickness predictions in the study area using an SVM method are good.The distribution of the sedimentary microfacies in the study area has been depicted at a fine scale.
文摘Seismic inversion is one of the most important methods for lithological prospecting . Seismic data with lowresolution is converted into impedance data of high resolution which can reflect the geological structure by inversionThe inversion technique of 3D seismic data is discussed from both methodological and theoretical aspects, and the in-version test is also carried out using actual logging data. The result is identical with the measured data obtained fromroadway of coal mine. The field tests and research results indicate that this method can provide more accurate data foridentifying thin coal seam and minor faults.
文摘3D seismic prospecting in mining areas of Xieqiao Colliery is a successfulmodel for an advancement from the resource prospecting to mining prospecting stagein coal fields. Its results have proved that faults with a throw of 5-10 m can be detected in an area with good seismogeologic conditions by using 3D seismic technique.Detection of underground tunnels for the first time utilizing 3D seismic data indicates that subsided columns, gotten and mine goaf can be detected using 3D seismic technique, so it has a broad applied prospect.
文摘The study aims to identify Albian-age oil prospects in Block A of the San Pedro margin, Côte d’Ivoire, by conducting a detailed geological interpretation. The objective is to confirm the presence of oil reservoirs trapped by favorable geological structures, identifiable through geophysical and seismic methods. The methodological approach is based on a combined analysis of studies and seismic data. Drilling data from well PA, including well logs and end-of-well reports, were used to characterize the lithological formations encountered, particularly those of the Albian. 3D seismic profiles were interpreted to identify structures conducive to hydrocarbon accumulation. Isochrone, isovelocity, and isobath maps were developed to refine the interpretation. Sedimentological analyses revealed five sandy/gritty levels between 2610 m and 3100 m, interspersed with clay, limestone, and siltstone beds. The seismic profiles highlighted two main prospects. These prospects exhibit favorable geological structures, including normal faults and structural traps that provide oil traps.
文摘3D visualization technology is a tool used for displaying, describing, and understanding the characteristics of geologic bodies, and features high efficiency, objective accuracy, visual expression, etc. In this paper, the man-machine interactive interpretation and 3D visualization technology rapidly displaying and analyzing the 3D seismic data of hydrate ore volume is researched and developed using the hybrid rendering technique. Through the integrated interpretation on the 3D space structure, stratum, and seismic attributes, the visualized multi-attribute superimposition analysis is implemented for describing the spatial distribution characteristics of hydrate ore volume and exquisitely describing the subtle geological characteristics of hydrate ore volume. By the hybrid rendering technique, authentication and interpretation are provided for the geological exploration work, so as to greatly enhance the visualization and accuracy of the geological analysis, and also provide a good decision-making foundation for the subsequent development of resources.
文摘The production capacity and efficiency for mechanized coal faces of large-scale mines depend on the detecting degree of mining structures. It is a major task for geological exploration in coal fields to detect minor structures in district. 3D high resolution seismic prospecting is a effective measure for solving this problem.
基金Key project of the Ninth Five-Year plan from China Seismological Bureau (95-11-02-01).Contribution No. RCEG200107, Research Ce
文摘The magma system of Changbaishan-Tianchi Volcanic region is studied with three-dimensional deep seismic sounding (DSS) technique. The results show that the magma system of Changbaishan-Tianchi volcanic region, mainly characterized by low velocity of P wave, can be divided into three parts in terms of depth. At the depth range of 9-15 km, the distribution of the magma system is characterized by extensiveness, large scale and near-SN orientation. This layer is the major place for magma storage. From the depth of 15 km down to the lower crust, it is characterized by small lateral scale, which indicates the 'trace' of magma intrusion from the upper mantle into the crust and also implies that the magma system most probably extends to the upper mantle, or even deeper.(less than 8-9 km deep), the range of magma distribution is even smaller, centering on an SN-oriented area just north of the Tianchi crater. If low velocity of P wave is related to the magma system, it then reflects that the magma here is still in a state of relatively high temperature. In this sense, the magma system of Changbaishan-Tianchi volcanic region is at least not 'remains', in other words, it is in an 'active' state.
基金the National Natural Science Foundation of China(NSFC)program(41472084)the China Earthquake Administration,Institute of Seismology Foundation(IS201526246)for providing funding and for allowing publication of this paper
文摘The Fushan Depression is a half-graben rifted sub-basin located in the southeast of the Beibuwan Basin, South China Sea. The Paleogene Liushagang sequence is the main hydrocarbon-bearing stratigraphic unit in the sub-basin. Using three-dimensional(3-D)seismic data and logging data over the sub-basin, we analyzed structural styles and sedimentary characteristics of the Liushagang sequence. Five types of structural styles were defined: ancient horst, traditional slope, flexure slope-break, faulted slope-break and multiple-stage faults slope, and interpretations for positions, background and development formations of each structural style were discussed. Structural framework across the sub-basin reveals that the most remarkable tectonic setting is represented by the central transfer zone(CTZ) which divides the sub-basin into two independent depressions, and two kinds of sequence architectures are summarized:(i) the western multi-stage faults slope;(ii) the eastern flexure slope break belt. Combined with regional stress field of the Fushan Depression, we got plane combinations of the faults, and finally built up plan distribution maps of structural system for main sequence. Also, we discussed the controlling factors mainly focused on subsidence history and background tectonic activities such as volcanic activity and earthquakes. The analysis of structural styles and tectonic evolution provides strong theoretical support for future prospecting in the Fushan subbasin and other similar rifted basins of the Beibuwan Basin in South China Sea.
基金Foundation item: National Scientific and Technological Development Program (95-973-02-02) the Climb Program (95-S-05-01) of National Scientific and Technological Ministry of China and the State Natural Sciences Foundation of China (49874021).
文摘Based on the first arrival P and S data of 4 625 regional earthquakes recorded at 174 stations dispersed in the Yunnan and Sichuan Provinces, the 3-D velocity structure of crust and upper mantle in the region is determined, incorporating with previous deep geophysical data. In the upper crust, a positive anomaly velocity zone exists in the Sichuan basin, whereas a negative anomaly velocity zone exists in the western Sichuan plateau. The boundary between the positive and negative anomaly zones is the Longmenshan fault zone. The images of lower crust and upper mantle in the Longmenshan fault, Xianshuihe fault, Honghe fault and others show the characteristic of tectonic boundary, indicating that the faults likely penetrate the Moho discontinuity. The negative velocity anomalies at the depth of 50 km in the Tengchong volcanic area and the Panxi tectonic zone appear to be associated with the temperature and composition variations in the upper mantle. The overall features of the crustal and the upper mantle structures in the SichuanYunnan region are the lower average velocity in both crust and uppermost mantle, the large crustal thickness variations, and the existence of high conductivity layer in the crust or/and upper mantle, and higher geothermal value. All these features are closely related to the collision between the India and the Asia plates. The crustal velocity in the SichuanYunnan rhombic block generally shows normal value or positive anomaly, while the negative anomaly exists in the area along the large strike-slip faults as the block boundary. It is conducive to the crustal block side-pressing out along the faults. In the major seismic zones, the seismicity is relative to the negative anomaly velocity. Most strong earthquakes occurred in the upper-mid crust with positive anomaly or normal velocity, where the negative anomaly zone generally exists below.
基金the NIOC Exploration Directorate for supporting the projectthe Ferdowsi University of Mashhad for supporting this project(Research Project Code:3/27868)
文摘Lower Cretaceous Shurijeh–Shatlyk Formations host some of the main reservoirs in the Kopeh Dagh-Amu Darya Basin.Exploration in this area so far has focused on the development of structural traps, but recognition of stratigraphic traps in this area is of increasing importance. Integration of 3D seismic data with borehole data from thirteen wells and five outcrop sections was used to identify potential reservoir intervals and survey the hydrocarbon trap types in the East Kopeh Dagh Foldbelt(NE Iran). Analyses of horizontal slices indicated that the lower Shurijeh was deposited in a braided fluvial system.Generally, three types of channel were identified in the lower Shurijeh Formation: type 1, which is low-sinuosity channels interpreted to be filled with non-reservoir fine-grained facies;type 2, which is a moderately sinuous sand-filled channel with good prospectively;and type 3, which is narrow, high sinuosity channel filled with fine-grained sediments. Results indicate that upper Shurijeh–Shatlyk Formations were deposited in fluvial to delta and shallow marine environments. The identified delta forms the second reservoir zone in the Khangiran Field. Study of the stratigraphic aspects of the Shurijeh succession indicates that both lower and upper Shurijeh reservoirs are stratigraphic reservoir traps that improved during folding.