Objective: The measurement of phase angles is an important monitoring parameter and supplementation with omega-3 could promote benefits by modulating the electrical potential of membranes and increasing body cell mass...Objective: The measurement of phase angles is an important monitoring parameter and supplementation with omega-3 could promote benefits by modulating the electrical potential of membranes and increasing body cell mass. This study aimed to evaluate the effectiveness of omega-3 fatty acid supplementation on the phase angle of people living with HIV/AIDS. Methods: In this study, 63 individuals of all genders who were undergoing outpatient follow-up and showed lipodystrophy due to highly active antiretroviral therapy were analyzed. Our sample consisted of two groups, one that received supplementation containing 2550 mg of omega-3/day (1080 mg of eicosapentaenoic acid and 720 mg of docosahexaenoic acid) for three months (n = 32) and another that underwent nutrition guidance (n = 31). Phase angle and body cell mass were assessed for both groups and compared at the beginning of research (T0) and after our intervention (T1) for each group separately. Results: Phase angle averaged 6.45° ± 1.06 SD. The comparison between T0 and T1 showed a significant increase in phase angle and body cell mass, whereas the guidance group showed a decrease in body cell mass at T1 in relation to T0, with a significant p-value. Variance in phase angle between moments showed significant values between T0 and T1 in the supplementation group for all genders. Conclusion: Omega-3 positively modulated patients phase angle and body cell mass, but we emphasize the need for other studies that can solidify knowledge about supplementation dosage and intervention time.展开更多
Layered composite oxide materials with O3/P2 biphasic crystallographic structure typically demonstrate a combination of high capacities of the O3 phase and high operation voltages of the P2 phase.However,their practic...Layered composite oxide materials with O3/P2 biphasic crystallographic structure typically demonstrate a combination of high capacities of the O3 phase and high operation voltages of the P2 phase.However,their practical applications are seriously obstructed by difficulties in thermodynamic phase regulation,complicated electrochemical phase transition,and unsatisfactory cycling life.Herein,we propose an efficient structural evolution strategy from biphase to monophase of Na_(0.766+x)Li_(x)Ni_(0.33-x)Mn_(0.5)Fe_(0.1)Ti_(0.07)O_(2) through Li+substitution.The role of Li+substitution not only simplifies the unfavorable phase transition by altering the local coordination of transition metal(TM)cations but also stabilizes the cathode–electrolyte interphase to prevent the degradation of TM cations during battery cycling.As a result,the thermodynamically robust O_(3)-Na_(0.826)Li_(0.06)Ni_(0.27)Mn_(0.5)Fe_(0.1)Ti_(0.07)O_(2) cathode delivers a high capacity of 139.4 mAh g^(-1) at 0.1 C and shows prolonged cycling life at high rates,with capacity retention of 81.6%at 5 C over 500 cycles.This work establishes a solid relationship between the thermodynamic structure evolution and electrochemistry of layered cathode materials,contributing to the development of long-life sodium-ion batteries.展开更多
A novel negative thermal expansion(NTE) material NdMnO_(3) was synthesized by solid-state method at 1 523 K. The crystal structure, phase transition, pores effect and negative expansion properties of NdMnO_(3) were in...A novel negative thermal expansion(NTE) material NdMnO_(3) was synthesized by solid-state method at 1 523 K. The crystal structure, phase transition, pores effect and negative expansion properties of NdMnO_(3) were investigated by variable temperature X-ray diffraction(XRD), scanning electron microscope(SEM) and variable temperature Raman spectra. The compound exhibits NTE properties in the orderly O' phase crystal structure. When the temperature is from 293 to 759 K, the ceramic NdMnO_(3) shows negative thermal expansion of-4.7×10^(-6)/K. As temperature increases, the ceramic NdMnO_(3) presents NTE property range from 759 to 1 007 K. The average linear expansion coefficient is-18.88×10^(-6)/K. The physical mechanism of NTE is discussed and clarified through experiments.展开更多
Aqueous electrochromic battery(ECB)has shown intense potential for achieving energy storage and saving simultaneously.While tungsten oxide(WO_(3))is the most promising EC material for commercialization,the cycling sta...Aqueous electrochromic battery(ECB)has shown intense potential for achieving energy storage and saving simultaneously.While tungsten oxide(WO_(3))is the most promising EC material for commercialization,the cycling stability of WO_(3)-based aqueous ECBs is currently unsatisfactory due to the repeated phase transition during the redox process and the corrosion by acidic electrolytes.Herein,we present a titanium-tungsten oxide alloy(Ti-WO_(3))with controllable morphology and crystal phase synthesized by a facile hot injection method to overcome the challenges.In contrast to conventional monoclinic WO_(3),the Ti-WO_(3)nanorods can stably maintain their cubic crystal phase during the redox reaction in an acidic electrolyte,thus leading to dramatically enhanced response speed and cycling stability,Specifically,when working in a well-matched hybrid Al^(3+)/Zn^(2+)aqueous electrolyte,our phasetransition-free cubic Ti-WO_(3)exhibits an ultra-high cycling stability(>20000 cycles),fast response speed(3,95 s/4,65 s for bleaching/coloring),as well as excellent discharge areal capacity of 214.5 mA h m^(-2),We further fabricate a fully complementa ry aqueous electrochromic device,for the first time,using a Ti-WO_(3)/Prussian blue device architecture.Remarkably,the complementary ECB shows>10000 stable operation cycles,attesting to the feasibility of our Ti-WO_(3)for practical applications.Our work validates the significance of inhibiting the phase transitions of WO_(3)during the electrochromic process for realizing highly cyclable aqueous ECB,which can possibly provide a generalized design guidance for other high-quality metallic oxides for electrochemical applications.展开更多
Hole transport material free carbon-based all-inorganic CsPbBr_(3)perovskite solar cells(PSCs)are promising for commercialization due to its low-cost,high open-circuit voltage(V_(oc))and superior stability.Due to the ...Hole transport material free carbon-based all-inorganic CsPbBr_(3)perovskite solar cells(PSCs)are promising for commercialization due to its low-cost,high open-circuit voltage(V_(oc))and superior stability.Due to the different solubility of PbBr_(2)and CsBr in conventional solvents,CsPbBr_(3)films are mainly obtained by multi-step spin-coating through the phase evolution from PbBr_(2)to CsPb_(2)Br_(5)and then to CsPbBr_(3).The scalable fabrication of high-quality CsPbBr_(3)films has been rarely studied.Herein,an inkjet-printing method is developed to prepare high-quality CsPbBr_(3)films.The formation of long-range crystalline CsPb_(2)Br_(5)phase can effectively improve phase purity and promote regular crystal stacking of CsPbBr_(3).Consequently,the inkjet-printed CsPbBr_(3)C-PSCs realized PCEs up to 9.09%,8.59%and 7.81%with active areas of 0.09,0.25,and 1 cm^(2),respectively,demonstrating the upscaling potential of our fabrication method and devices.This high performance is mainly ascribed to the high purity,strong crystal orientation,reduced surface roughness and lower trap states density of the as-printed CsPbBr_(3)films.This work provides insights into the relationship between the phase evolution mechanisms and crystal growth dynamics of cesium lead bromide halide films.展开更多
The AA5052 aluminum alloy is widely used in automobile and aerospace manufacturing,and with the development of light-weight alloys,it is required that these materials exhibit better mechanical properties.Previous stud...The AA5052 aluminum alloy is widely used in automobile and aerospace manufacturing,and with the development of light-weight alloys,it is required that these materials exhibit better mechanical properties.Previous studies have demonstrated that the addition of Sc to aluminum alloys can improve both the microstructure and properties of the alloys.In this study,the effect of Sc on the Fe-rich phase and properties of the AA5052 aluminum alloy was studied by adding 0%,0.05%,0.2%,and 0.3%Sc.The results show that with the increase of Sc,the coarse needle-like Fe-rich phase gradually transforms into Chinese-script and then nearly spherical particles,reduce the size of Fe-rich phase,and refine the grain with increase of high angle grain boundaries(HAGBs).These microstructure changes enhance the strength of the AA5052 alloy through Sc addition.The ductility of the alloy is obviously improved because the addition of a lower amount of Sc changes the morphology of Fe-rich phase from needle-like into a Chinese-script,and it is subsequently reduced as a result of significant increase in HAGBs with increasing Sc content.展开更多
Al_(2)O_(3)and Ga_(2)O_(3)exhibit numerous crystal phases with distinct stabilities and materialproperties.However,the phase transitions among thosematerialsare typicallyundesirable in industrial applications,making i...Al_(2)O_(3)and Ga_(2)O_(3)exhibit numerous crystal phases with distinct stabilities and materialproperties.However,the phase transitions among thosematerialsare typicallyundesirable in industrial applications,making it imperative to elucidate the transition mechanisms between these phases.The configurational similarities between Al_(2)O_(3)and Ga_(2)O_(3)allow for the replication of phase transition pathways between these materials.In this study,we investigate the potential phase transition pathway of alumina from the 0-phase to the α-phase using stochastic surface walking global optimization based on global neural network potentials,while extending an existing Ga_(2)O_(3)phase transition path.Through this exploration,we identify a novel single-atom migration pseudomartensitic mechanism,which combines martensitic transformation with single-atom diffusion.This discovery offers valuable insights for experimental endeavors aimed at stabilizing alumina in transitional phases.展开更多
文摘Objective: The measurement of phase angles is an important monitoring parameter and supplementation with omega-3 could promote benefits by modulating the electrical potential of membranes and increasing body cell mass. This study aimed to evaluate the effectiveness of omega-3 fatty acid supplementation on the phase angle of people living with HIV/AIDS. Methods: In this study, 63 individuals of all genders who were undergoing outpatient follow-up and showed lipodystrophy due to highly active antiretroviral therapy were analyzed. Our sample consisted of two groups, one that received supplementation containing 2550 mg of omega-3/day (1080 mg of eicosapentaenoic acid and 720 mg of docosahexaenoic acid) for three months (n = 32) and another that underwent nutrition guidance (n = 31). Phase angle and body cell mass were assessed for both groups and compared at the beginning of research (T0) and after our intervention (T1) for each group separately. Results: Phase angle averaged 6.45° ± 1.06 SD. The comparison between T0 and T1 showed a significant increase in phase angle and body cell mass, whereas the guidance group showed a decrease in body cell mass at T1 in relation to T0, with a significant p-value. Variance in phase angle between moments showed significant values between T0 and T1 in the supplementation group for all genders. Conclusion: Omega-3 positively modulated patients phase angle and body cell mass, but we emphasize the need for other studies that can solidify knowledge about supplementation dosage and intervention time.
基金This work was supported by the National Natural Science Foundation of China(52102302,51807146,and 22179021)the Young Talent Support Plan of Xi'an Jiaotong University(Grant No.DQ6J011)+2 种基金Natural Science Foundation of Shaanxi Province(2023-JC-QN-0115)State Key Laboratory of Electrical Insulation and Power Equipment(EIPE23313)the Fundamental Research Funds for the Central Universities(xyz012023165).
文摘Layered composite oxide materials with O3/P2 biphasic crystallographic structure typically demonstrate a combination of high capacities of the O3 phase and high operation voltages of the P2 phase.However,their practical applications are seriously obstructed by difficulties in thermodynamic phase regulation,complicated electrochemical phase transition,and unsatisfactory cycling life.Herein,we propose an efficient structural evolution strategy from biphase to monophase of Na_(0.766+x)Li_(x)Ni_(0.33-x)Mn_(0.5)Fe_(0.1)Ti_(0.07)O_(2) through Li+substitution.The role of Li+substitution not only simplifies the unfavorable phase transition by altering the local coordination of transition metal(TM)cations but also stabilizes the cathode–electrolyte interphase to prevent the degradation of TM cations during battery cycling.As a result,the thermodynamically robust O_(3)-Na_(0.826)Li_(0.06)Ni_(0.27)Mn_(0.5)Fe_(0.1)Ti_(0.07)O_(2) cathode delivers a high capacity of 139.4 mAh g^(-1) at 0.1 C and shows prolonged cycling life at high rates,with capacity retention of 81.6%at 5 C over 500 cycles.This work establishes a solid relationship between the thermodynamic structure evolution and electrochemistry of layered cathode materials,contributing to the development of long-life sodium-ion batteries.
文摘A novel negative thermal expansion(NTE) material NdMnO_(3) was synthesized by solid-state method at 1 523 K. The crystal structure, phase transition, pores effect and negative expansion properties of NdMnO_(3) were investigated by variable temperature X-ray diffraction(XRD), scanning electron microscope(SEM) and variable temperature Raman spectra. The compound exhibits NTE properties in the orderly O' phase crystal structure. When the temperature is from 293 to 759 K, the ceramic NdMnO_(3) shows negative thermal expansion of-4.7×10^(-6)/K. As temperature increases, the ceramic NdMnO_(3) presents NTE property range from 759 to 1 007 K. The average linear expansion coefficient is-18.88×10^(-6)/K. The physical mechanism of NTE is discussed and clarified through experiments.
基金funded by the Science and Technology Development Fund,Macao SAR(File no.0052/2021/AGJ,0027/2023/AMJ,0083/2023/ITP2 and 0107/2023/AFJ)the Multi-Year Research Grants(MYRG2022-00063-IAPME,MYRG-GRG2023-00230-IAPME-UMDF)from the University of Macao+1 种基金the Guangdong Science and Technology Plan(2022A0505020022)the Major Science and Technology Research and Development Project of Jiangxi Province(20223AAE01003)。
文摘Aqueous electrochromic battery(ECB)has shown intense potential for achieving energy storage and saving simultaneously.While tungsten oxide(WO_(3))is the most promising EC material for commercialization,the cycling stability of WO_(3)-based aqueous ECBs is currently unsatisfactory due to the repeated phase transition during the redox process and the corrosion by acidic electrolytes.Herein,we present a titanium-tungsten oxide alloy(Ti-WO_(3))with controllable morphology and crystal phase synthesized by a facile hot injection method to overcome the challenges.In contrast to conventional monoclinic WO_(3),the Ti-WO_(3)nanorods can stably maintain their cubic crystal phase during the redox reaction in an acidic electrolyte,thus leading to dramatically enhanced response speed and cycling stability,Specifically,when working in a well-matched hybrid Al^(3+)/Zn^(2+)aqueous electrolyte,our phasetransition-free cubic Ti-WO_(3)exhibits an ultra-high cycling stability(>20000 cycles),fast response speed(3,95 s/4,65 s for bleaching/coloring),as well as excellent discharge areal capacity of 214.5 mA h m^(-2),We further fabricate a fully complementa ry aqueous electrochromic device,for the first time,using a Ti-WO_(3)/Prussian blue device architecture.Remarkably,the complementary ECB shows>10000 stable operation cycles,attesting to the feasibility of our Ti-WO_(3)for practical applications.Our work validates the significance of inhibiting the phase transitions of WO_(3)during the electrochromic process for realizing highly cyclable aqueous ECB,which can possibly provide a generalized design guidance for other high-quality metallic oxides for electrochemical applications.
基金supported by the National Key Research and Development Program of China(Grant Nos.2021YFB3800100 and 2021YFB3800101)the National Natural Science Foundation of China(62004089,U2001217,and U19A2089)+6 种基金the Guangdong Basic and Applied Basic Research Foundation(2019A1515110439,2019B1515120083,and2022A1515011218)the Shenzhen Science and Technology Program(JCYJ20190809150811504 and KQTD2015033110182370)the HKRGC General Research Funds(16312216)the Shenzhen&Hong Kong Joint Research Program(SGLH20180622092406130)the Shenzhen Engineering Research and Development Center for Flexible Solar Cel s Project funding from Shenzhen Development and Reform Committee(2019-126)the Key Fundamental Research Project funding from the Shenzhen Science and Technology Innovation Committee(JCYJ20200109141014474)the Guangdong-Hong Kong-Macao Joint Laboratory(2019B121205001)
文摘Hole transport material free carbon-based all-inorganic CsPbBr_(3)perovskite solar cells(PSCs)are promising for commercialization due to its low-cost,high open-circuit voltage(V_(oc))and superior stability.Due to the different solubility of PbBr_(2)and CsBr in conventional solvents,CsPbBr_(3)films are mainly obtained by multi-step spin-coating through the phase evolution from PbBr_(2)to CsPb_(2)Br_(5)and then to CsPbBr_(3).The scalable fabrication of high-quality CsPbBr_(3)films has been rarely studied.Herein,an inkjet-printing method is developed to prepare high-quality CsPbBr_(3)films.The formation of long-range crystalline CsPb_(2)Br_(5)phase can effectively improve phase purity and promote regular crystal stacking of CsPbBr_(3).Consequently,the inkjet-printed CsPbBr_(3)C-PSCs realized PCEs up to 9.09%,8.59%and 7.81%with active areas of 0.09,0.25,and 1 cm^(2),respectively,demonstrating the upscaling potential of our fabrication method and devices.This high performance is mainly ascribed to the high purity,strong crystal orientation,reduced surface roughness and lower trap states density of the as-printed CsPbBr_(3)films.This work provides insights into the relationship between the phase evolution mechanisms and crystal growth dynamics of cesium lead bromide halide films.
基金supported by the Key Research&Development Program of Yunnan Province(Grant numbers 202103AA080017,202203AE140011).
文摘The AA5052 aluminum alloy is widely used in automobile and aerospace manufacturing,and with the development of light-weight alloys,it is required that these materials exhibit better mechanical properties.Previous studies have demonstrated that the addition of Sc to aluminum alloys can improve both the microstructure and properties of the alloys.In this study,the effect of Sc on the Fe-rich phase and properties of the AA5052 aluminum alloy was studied by adding 0%,0.05%,0.2%,and 0.3%Sc.The results show that with the increase of Sc,the coarse needle-like Fe-rich phase gradually transforms into Chinese-script and then nearly spherical particles,reduce the size of Fe-rich phase,and refine the grain with increase of high angle grain boundaries(HAGBs).These microstructure changes enhance the strength of the AA5052 alloy through Sc addition.The ductility of the alloy is obviously improved because the addition of a lower amount of Sc changes the morphology of Fe-rich phase from needle-like into a Chinese-script,and it is subsequently reduced as a result of significant increase in HAGBs with increasing Sc content.
基金supported by the National Natural Science Foundation of China(No.12188101,No.22122301,No.22033003,No.91745201,No.91945301,No.92145302,and No.92061112)the Fundamental Research Funds for the Central Universities(20720220011)+1 种基金the National Key Research and Devel-opment Program of China(2018YF A0208600)the Tencent Foundation for XPLORER PRIZE.
文摘Al_(2)O_(3)and Ga_(2)O_(3)exhibit numerous crystal phases with distinct stabilities and materialproperties.However,the phase transitions among thosematerialsare typicallyundesirable in industrial applications,making it imperative to elucidate the transition mechanisms between these phases.The configurational similarities between Al_(2)O_(3)and Ga_(2)O_(3)allow for the replication of phase transition pathways between these materials.In this study,we investigate the potential phase transition pathway of alumina from the 0-phase to the α-phase using stochastic surface walking global optimization based on global neural network potentials,while extending an existing Ga_(2)O_(3)phase transition path.Through this exploration,we identify a novel single-atom migration pseudomartensitic mechanism,which combines martensitic transformation with single-atom diffusion.This discovery offers valuable insights for experimental endeavors aimed at stabilizing alumina in transitional phases.