In this study, soil column was used to study the new nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on nitrate (NO3^-- N) and potassium (K) leaching in the sandy loam soil and clay loam soil. The ...In this study, soil column was used to study the new nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on nitrate (NO3^-- N) and potassium (K) leaching in the sandy loam soil and clay loam soil. The results showed that DMPP with ammonium sulphate nitrate (ASN) ((NH4)2SO4 and NHaNO3) or urea could reduce NO3^--N leaching significantly, whereas ammonium (NH4^+-N) leaching increased slightly. In case of total N (NO3^--N+NH4^+-N), losses by leaching during the experimental period (40 d) were 37.93 mg (urea), 31.61 mg (urea+DMPP), 108.10 mg (ASN), 60.70 mg (ASN+DMPP) in the sandy loam soil, and 30.54 mg (urea), 21.05 mg (urea+DMPP), 37.86 mg (ASN), 31.09 mg (ASN+DMPP) in the clay loam soil, respectively. DMPP-amended soil led to the maintenance of relatively high levels of NH4^+ -N and low levels of NO3^--N in soil, and nitrification was slower. DMPP supplementation also resulted in less potassium leached, but the difference was not significant except the treatment of ASN and ASN+DMPP in the sandy loam soil. Above results indicate that DMPP is a good nitrification inhibitor, the efficiency of DMPP seems better in the sandy loam soil than in the clay loam soil and lasts longer.展开更多
An undisturbed heavy clay soil column experiment was conducted to examine the influence of the new nitrification inhibitor, 3,4- dimethylpyrazole phosphate (DMPP), on nitrogen and soil salt-ion leaching. Regular ure...An undisturbed heavy clay soil column experiment was conducted to examine the influence of the new nitrification inhibitor, 3,4- dimethylpyrazole phosphate (DMPP), on nitrogen and soil salt-ion leaching. Regular urea was selected as the nitrogen source in the soil. The results showed that the cumulative leaching losses of soil nitrate-N under the treatment of urea with DMPP were from 57.5% to 63.3% lower than those of the treatment of urea without DMPP. The use of nitrification inhibitors as nitrate leaching retardants may be a proposal in regulations to prevent groundwater contaminant. However, there were no great difference between urea and urea with DMPP treatments on ammonium-N leaching. Moreover, the soil salt-ion leaching losses of Ca^2+, Mg^2+, K^+, and Na^+ were reduced from 26.6% to 28.8%, 21.3% to 27.8%, 33.3% to 35.5%, and 21.7% to 32.1%, respectively. So, the leaching losses of soil salt-ion were declined for nitrification inhibitor DMPP addition, being beneficial to shallow groundwater protection and growth of crop. These results indicated the possibility of ammonium or ammonium producing compounds using nitrification inhibitor DMPP to control the nitrate and nutrient cation leaching losses, minimizing the risk of nitrate pollution in shallow groundwater.展开更多
基金Project supported by the National Natural Science Foundation of China(No. 30571082)the Science and Technology Committee of ZhejiangProvince (No. 021102084)the Agriculture Department of ZhejiangProvince (No. SN 200404) and BASF Company of Germany.
文摘In this study, soil column was used to study the new nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on nitrate (NO3^-- N) and potassium (K) leaching in the sandy loam soil and clay loam soil. The results showed that DMPP with ammonium sulphate nitrate (ASN) ((NH4)2SO4 and NHaNO3) or urea could reduce NO3^--N leaching significantly, whereas ammonium (NH4^+-N) leaching increased slightly. In case of total N (NO3^--N+NH4^+-N), losses by leaching during the experimental period (40 d) were 37.93 mg (urea), 31.61 mg (urea+DMPP), 108.10 mg (ASN), 60.70 mg (ASN+DMPP) in the sandy loam soil, and 30.54 mg (urea), 21.05 mg (urea+DMPP), 37.86 mg (ASN), 31.09 mg (ASN+DMPP) in the clay loam soil, respectively. DMPP-amended soil led to the maintenance of relatively high levels of NH4^+ -N and low levels of NO3^--N in soil, and nitrification was slower. DMPP supplementation also resulted in less potassium leached, but the difference was not significant except the treatment of ASN and ASN+DMPP in the sandy loam soil. Above results indicate that DMPP is a good nitrification inhibitor, the efficiency of DMPP seems better in the sandy loam soil than in the clay loam soil and lasts longer.
文摘An undisturbed heavy clay soil column experiment was conducted to examine the influence of the new nitrification inhibitor, 3,4- dimethylpyrazole phosphate (DMPP), on nitrogen and soil salt-ion leaching. Regular urea was selected as the nitrogen source in the soil. The results showed that the cumulative leaching losses of soil nitrate-N under the treatment of urea with DMPP were from 57.5% to 63.3% lower than those of the treatment of urea without DMPP. The use of nitrification inhibitors as nitrate leaching retardants may be a proposal in regulations to prevent groundwater contaminant. However, there were no great difference between urea and urea with DMPP treatments on ammonium-N leaching. Moreover, the soil salt-ion leaching losses of Ca^2+, Mg^2+, K^+, and Na^+ were reduced from 26.6% to 28.8%, 21.3% to 27.8%, 33.3% to 35.5%, and 21.7% to 32.1%, respectively. So, the leaching losses of soil salt-ion were declined for nitrification inhibitor DMPP addition, being beneficial to shallow groundwater protection and growth of crop. These results indicated the possibility of ammonium or ammonium producing compounds using nitrification inhibitor DMPP to control the nitrate and nutrient cation leaching losses, minimizing the risk of nitrate pollution in shallow groundwater.